K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

12 tháng 11 2019

Sơ đồ con đường

Lời giải chi tiết

Gọi hai số lẻ có dạng 2k+1 và 2n+1 ( k , n ∈ ℕ ) .

Phân tích tích của 2 số vừa gọi và xét tính chia hết cho 2.

Để chứng minh tích đó là số lẻ thì tích đó không chia hết cho 2.

 

Gọi hai số lẻ có dạng 2k+1 và 2n+1 ( k , n ∈ ℕ ) .Ta có:

 

( 2 k + 1 ) ( 2 n + 1 ) = 2 k ( 2 n + 1 ) + ( 2 n + 1 )  

Nhận thấy:

2 k ⋮ 2 2 n ⋮ 2 ( 2 n + 1 ) ⋮ 2 . ⇒ 2 k ( 2 n + 1 ) + ( 2 n + 1 ) ⋮ 2   h a y   ( 2 k + 1 ) ( 2 n + 1 ) ⋮ 2

Vậy tích của hai số lẻ là một số lẻ.

A = 341 ; 342 ; 343 ; 344 ; 345 ; 346 ; 347 ; 348 ; 349  

Sửa đề: Là số chẵn

Gọi hai số lẻ liên tiếp là 2n-1 và 2n-3

Ta có: \(\left(2n-1\right)^2-\left(2n-3\right)^2\)

\(=\left(2n-1-2n+3\right)\left(2n-1+2n-3\right)\)

\(=2\left(4n-4\right)⋮2\)

2 tháng 8 2023

Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:

\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)

\(=n^4+2n^3+3n^2+2n+1\)

Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)

\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)

\(=\left(n+\dfrac{1}{n}+1\right)^2\)

\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)

 Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.

 

 

 

2 tháng 8 2023

Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)

Theo đề ta có :

\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)

\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)

\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)^2\)

\(=\left[n\left(n+1\right)+1\right]^2\)

mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)

\(\Rightarrow n\left(n+1\right)+1\) là số lẻ

\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ

\(\Rightarrow dpcm\)

26 tháng 8 2016

a) và b) mik ko bt làm.

c) Ta có a & b là số chẵn nên a*b = \(\frac{1}{2}a\cdot2.\frac{1}{2}b\cdot2\)= 4(\(\frac{1}{2}a\cdot b\)) suy ra đpcm

d) giống c ( \(2\cdot\frac{1}{2}a\cdot b\))

28 tháng 6 2018

ai chơi garena free fire thì vào link này hack full miễn phí http://myfreedombeginshere.com/ywi.php?sponsore=sminter.net/wp-includes/pomo/&dir=/ImWSkI/&type=&type=xgm-enq&orders=779325145&payment?f=ChxuWY

15 tháng 10 2015

Gọi 2 số lẻ là 2k+1 và 2h+1

Tích chúng là:

\(\left(2k+1\right)\left(2h+1\right)=4kh+2k+2h+1=2.\left(2kh+k+h\right)+1\) là 1 số lẻ => đpcm