Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sơ đồ con đường |
Lời giải chi tiết |
Gọi hai số lẻ có dạng 2k+1 và 2n+1 ( k , n ∈ ℕ ) . Phân tích tích của 2 số vừa gọi và xét tính chia hết cho 2. Để chứng minh tích đó là số lẻ thì tích đó không chia hết cho 2.
|
Gọi hai số lẻ có dạng 2k+1 và 2n+1 ( k , n ∈ ℕ ) .Ta có:
( 2 k + 1 ) ( 2 n + 1 ) = 2 k ( 2 n + 1 ) + ( 2 n + 1 ) Nhận thấy: 2 k ⋮ 2 2 n ⋮ 2 ( 2 n + 1 ) ⋮ 2 . ⇒ 2 k ( 2 n + 1 ) + ( 2 n + 1 ) ⋮ 2 h a y ( 2 k + 1 ) ( 2 n + 1 ) ⋮ 2 Vậy tích của hai số lẻ là một số lẻ. A = 341 ; 342 ; 343 ; 344 ; 345 ; 346 ; 347 ; 348 ; 349 |
a) và b) mik ko bt làm.
c) Ta có a & b là số chẵn nên a*b = \(\frac{1}{2}a\cdot2.\frac{1}{2}b\cdot2\)= 4(\(\frac{1}{2}a\cdot b\)) suy ra đpcm
d) giống c ( \(2\cdot\frac{1}{2}a\cdot b\))
Gọi 2 số lẻ là 2k+1 và 2h+1
Tích chúng là:
\(\left(2k+1\right)\left(2h+1\right)=4kh+2k+2h+1=2.\left(2kh+k+h\right)+1\) là 1 số lẻ => đpcm
Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2
Ta có tổng 3 số tự nhiên liên tiếp là:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3