\(444444444444443555555555555555\)là tích của hai số lẻ liên tiếp.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

b, Gọi ƯCLN(2n+5;3n+7) = d ( \(d\in N\)*)

Ta có : 2n + 5 \(⋮\)d => 6n + 15 \(⋮\)d (1)

3n + 7 \(⋮\)d => 6n + 14 \(⋮\)d (2) 

Lấy (1) - (2) ta được : \(6n+15-6n-14⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có đpcm 

31 tháng 12 2016

A) Gọi 2 số tự nhiên liên tiếp (khác 0) là n và n+1.

Gọi ƯCLN của 2 số trên là a, ta có: n chia hết cho a; n+1 chia hết cho a => n+1-n chia hết cho a hay 1 chia hết cho a => a=1 => n và n+1 nguyên tố cùng nhau.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

31 tháng 12 2016

B) Gọi 2 số lẻ liên tiếp là n và n+2. Gọi a là ƯCLN của n và n+2, ta có:

n chia hết cho a; n+2 chia hết cho a => n+2-n chia hết cho a hay 2 chia hết cho a.

Do n; n+2 lẻ nên a lẻ => a=1 => n và n+2 nguyên tố cùng nhau.

Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.

4 tháng 4 2015

a)Gọi 2 số lẻ liên tiếp là:n và n+2;ƯCLN(n;n+2)=d

=>n chia hết cho d và n+2 chia hết cho d

=>(n+2)-n chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư(2)={1;2}

Mà n và n+2 là số lẻ =>ƯCLN(n;n+1)=1

=> điều phải chứng minh

 

4 tháng 4 2015

b)

Ta có:1/2-1/4+1/8-1/16+1/32-1/64=(1/2-1/4)+(1/8-1/16)+(1/32-1/64)

=(2/4-1/4)+(2/16-1/16)+(2/64-1/64)

=1/4+1/16+1/64

=16/64+4/64+1/64

=21/64=63/192

Ta có:1/3=64/192

Mà63/192<64/192

=>điều phải chứng minh

17 tháng 6 2015

m; n là 2 số chính phương lẻ liên tiếp nên gọi m = (2k + 1)2 ; n = (2k+3)2

=> A =  mn - m - n + 1 = (2k + 1)2. (2k +3)2 - (2k +1)2 - (2k +3)2 + 1

= (2k + 1)2 . [(2k +3)2 - 1] -  [ (2k +3) - 1] = [(2k +1)2 - 1].  [(2k +3)2 - 1]  = (2k + 1 - 1).(2k + 1 +1)(2k +3 + 1).(2k +3 -1)

= 2k.(2k +2).(2k +4).(2k +2) = 16.k.(k+1)2.(k+2)

+) Vì k; k+1; k+2 là 3 số tự nhiên liên tiếp => k(k+1).(k+2) chia hết cho 3

=> A chia hết cho 3

+) Chứng minh A chia hết cho 64:

Nếu k chẵn => k và k+ 2 chẵn => A chia hết cho 16.4 = 64

Nếu k lẻ => k+ 1 chẵn => (k+1)2 chia hết cho 4 => A chia hết cho 64

Vậy A chia hết cho BCNN (3; 64) = 192

 

24 tháng 2 2017

tra loi giup mik cai cau duoi

7 tháng 2 2017

Gọi hai số đó là 2k+1;2k+3(k thuộc N) va UCLN(2k+1;2k+3)=d

=> \(\hept{\begin{cases}2k+1⋮d\\2k+3⋮d\end{cases}}\)

=>\(2k+1-2k+3⋮d\)

=>2 chia hết cho d =>UCLN(2k+1;2k+3) thuoc {1,2}

Mà 2k+1 và 2k+3 là số lẻ

=>UCLN(2k+1;2k+3)=1

=>2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau

18 tháng 7 2017

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

18 tháng 7 2017

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

a)
Hai số lẻ liên tiếp có dạng 2n + 1 và 2n + 3 (n N). 
Gọi d là ước số chung của chúng. Ta có: 2n + 1d và 3n + 3 d 
nên (2n + 3) - (2n + 1) d hay 2d
nhưng d không thể bằng 2 vì d là ước chung của 2 số lẻ. 
Vậy d = 1 tức là hai số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau. 

b) 
Ta có: 5 = 2 + 3; 9 = 4 + 5; 13 = 6 + 7; 16 =7 + 8 ... 
Do vậy x = a + (a+1) (a N)

nen 1+5+9+13+16+...+ x=1+2+3+4+5+6+7+...+a+(a+1)=501501

hay (a+1)9a+1+10:2=501501

(a+1)(a+2)-1003002-1001.1002

suy ra :a=1000

do đó :x=1000+(1000+1)=2001