Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)Chứng minh rằng \(\frac{1}{a^{1995}+b^{1995}+c^{1995}}=\frac{1}{a^{1995}+b^{1995}+c^{1995}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 1/a+1/b+1/c=1/a+b+c
suy ra:(ab+bc+ac)/abc=1/a+b+c
=>(ab+ac+bc)(a+b+c)=abc
=>a2b+ab2+a2c+ac2+b2c+bc2+3abc=abc
(a+b)(b+c)(a+c)=0
=>a=-b hc b=-c hc a=-c
ta sẽ dễ dàng c/m được với 3 t/h trên thì 1/a1995+1/b1995+1/c1995=1/a1995+b1995+c1995
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=-\frac{a+b}{c\left(a+b+c\right)}\)=> a = -b hoặc ab +c(a+b+c) =0
+ a = -b => thay => dpcm
+ab + c(a+b+c) =0 =>(a+c)(b+c) =0 => a =-c hoạc b =-c thay => dpcm
a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)
\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)
Chúc bạn học tốt!
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+abc+abc+bc^2+ac^2=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\Leftrightarrow...\)
\(P=0\)
Xuất phát từ giả thiết , ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
=> \(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)
=> \(\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)
=> \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
=> \(a\left(ab+bc+ac\right)+b\left(ab+bc+ac\right)+c\left(ab+bc+ac\right)-abc=0\)=> a2b + abc + a2c + ab2 + b2c + abc + abc + bc2 + ac2 - abc = 0
=> ab(a + b) + ac( a + c) + bc( b + c) + 2abc = 0
=> ab( a + b + c) + ac( a + b + c ) + bc( b + c) = 0
=> ( a + b + c)a( b + c) + bc( b + c) = 0
=> ( b + c)( a2 + ab + ac + bc) = 0
=> ( b + c)( a + b)( c + a) = 0
Suy ra :
* b = -c
*a = -b
* c = -a
TH1 :Với b = -c
\(VT=\dfrac{1}{a^{1995}}+\dfrac{1}{\left(-c\right)^{1995}}+\dfrac{1}{c^{1995}}=\dfrac{1}{a^{1995}}\)
\(VP=\dfrac{1}{a^{1995}+b^{1995}+c^{1995}}=\dfrac{1}{a^{1995}+\left(-c\right)^{1995}+c^{1995}}=\dfrac{1}{a^{1995}}=VT\)
TH2 : với a = -b
\(VT=\dfrac{1}{\left(-b\right)^{1995}}+\dfrac{1}{b^{1995}}+\dfrac{1}{c^{1995}}=\dfrac{1}{c^{1995}}\)
\(VP=\dfrac{1}{a^{1995}+b^{1995}+c^{1995}}=\dfrac{1}{\left(-b\right)^{1995}+b^{1995}+c^{1995}}=\dfrac{1}{c^{1995}}=VT\)
TH3 . c = -a , Tương tự
Vậy , đẳng thức được Chứng minh