Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
a) \(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{\left(kb\right)^{2004}-b^{2004}}{\left(kb\right)^{2004}+b^{2004}}=\frac{k^{2004}b^{2004}-b^{2004}}{k^{2004}b^{2004}+b^{2004}}=\frac{b^{2004}\left(k^{2004}-1\right)}{b^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(1)
\(\frac{c^{2004}-d^{2004}}{d^{2004}+d^{2004}}=\frac{\left(kd\right)^{2004}-d^{2004}}{\left(kd\right)^{2004}+d^{2004}}=\frac{k^{2004}d^{2004}-d^{2004}}{k^{2004}d^{2004}+d^{2004}}=\frac{d^{2004}\left(k^{2004}-1\right)}{d^{2004}\left(k^{2004}+1\right)}=\frac{k^{2004}-1}{k^{2004}+1}\)(2)
Từ (1) và (2) => đpcm
b) \(\frac{a^{2005}}{b^{2005}}=\frac{\left(kb\right)^{2005}}{b^{2005}}=\frac{k^{2005}b^{2005}}{b^{2005}}=k^{2005}\)(1)
\(\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left(kb-kd\right)^{2005}}{\left(b-d\right)^{2005}}=\frac{\left[k\left(b-d\right)\right]^{2005}}{\left(b-d\right)^{2005}}=\frac{k^{2005}\left(b-d\right)^{2005}}{\left(b-d\right)^{2005}}=k^{2005}\)(2)
Từ (1) và (2) => đpcm
a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)
\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)
\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)
Chúc bạn học tốt!
Câu 2:A= 75.(42004+42003+.....+42+4+1)+25=75.|(42005-1):3+25=25.(42005-1+1)=25.42005chia hết 100
Suy ra A chia hết cho 100
CHÚC BẠN HỌC TỐT NHÉ !!!!!!!!!
\(ad=bc=>\frac{a}{c}=\frac{b}{d}=>\frac{a^{2004}}{c^{2004}}=\frac{b^{2004}}{d^{2004}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^{2004}}{c^{2004}}=\frac{b^{2004}}{d^{2004}}=\frac{a^{2003}-b^{2004}}{c^{2004}-d^{2004}}=\frac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}\)
=>\(\frac{a^{2003}-b^{2004}}{c^{2004}-d^{2004}}=\frac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}\)
=>\(\frac{a^{2003}-b^{2004}}{a^{2004}+b^{2004}}=\frac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)
\(ad=bc\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^{2004}}{c^{2004}}=\frac{b^{2004}}{d^{2004}}\)
\(\Rightarrow\frac{a^{2004}}{c^{2004}}=\frac{b^{2004}}{d^{2004}}=\frac{a^{2004}-b^{2004}}{c^{2004}-d^{2004}}=\frac{a^{2004}+b^{2004}}{c^{2004}+d^{2004}}\)
\(\Rightarrow\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\left(đpcm\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\Rightarrow a=b=c=d\)
\(\Rightarrow M=\frac{a^{2001}\cdot b\cdot c^2}{b^{2004}}=\frac{a^{2004}}{b^{2004}}=1\)
ta có
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
.........
dat \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\)
suy ra \(\hept{\begin{cases}a=2003k\\b=2004k\\c=2005k\end{cases}}\)
4.(a-b).(b-c)=4.(2003k-2004k).(2004k-2005k)=4k^2
(c-a)^2=(2005k-2003k)^2=4k^2
xong roi do cho minh dung nhe!
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=\frac{a-b}{2003-2004}=\frac{b-c}{2004-2005}=\frac{c-a}{2005-2003}\)
\(\Rightarrow-\left(a-b\right)=-\left(b-c\right)=\frac{c-a}{2}\)
Thay vào \(4\left(a-b\right)\left(b-c\right)\), ta được :
\(4\left(a-b\right)\left(b-c\right)=4\left(-\frac{c-a}{2}\right)\left(-\frac{c-a}{2}\right)\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=4\left[\frac{\left(c-a\right)^2}{4}\right]\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( điều phải chứng minh )