\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)Chứng minh rằng 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2015

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=-\frac{a+b}{c\left(a+b+c\right)}\)=> a = -b  hoặc ab +c(a+b+c) =0

+ a = -b => thay => dpcm

+ab + c(a+b+c) =0 =>(a+c)(b+c) =0 => a =-c hoạc  b =-c thay => dpcm

 

23 tháng 12 2018

Ta có : 1/a+1/b+1/c=1/a+b+c
suy ra:(ab+bc+ac)/abc=1/a+b+c
=>(ab+ac+bc)(a+b+c)=abc
=>a2b+ab2+a2c+ac2+b2c+bc2+3abc=abc
(a+b)(b+c)(a+c)=0
=>a=-b hc b=-c hc a=-c
ta sẽ dễ dàng c/m được với 3 t/h trên thì 1/a1995+1/b1995+1/c1995=1/a1995+b1995+c1995

13 tháng 3 2019

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\Leftrightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

\(\Leftrightarrow a^2b+a^2c+b^2a+b^2c+abc+abc+bc^2+ac^2=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\Leftrightarrow...\)

\(P=0\)

28 tháng 2 2020

a) \(\frac{2-x}{2016}-1=\frac{1-x}{2017}-\frac{x}{2018}\)

\(\Leftrightarrow\frac{2-x}{2016}+1=\frac{1-2}{2017}+1-\frac{x}{2018}+1\)

\(\Leftrightarrow\frac{2018-x}{2016}=\frac{2018-x}{2017}+\frac{2018-x}{2018}\)

\(\Leftrightarrow\frac{2018-x}{2016}-\frac{2018-x}{2017}-\frac{2018-x}{2018}=0\)

\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)

\(\Leftrightarrow2018-x=0\) ( vì \(\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

b)\(\frac{x-19}{1999}+\frac{x-23}{1995}+\frac{x+82}{700}=5\)

\(\Leftrightarrow\left(\frac{x-19}{1999}-1\right)+\left(\frac{x-23}{1995}+-1\right)+\left(\frac{x+82}{700}-3\right)=0\)

\(\Leftrightarrow\frac{x-2018}{1999}+\frac{x-2018}{1995}+\frac{x-2018}{700}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\right)=0\)

\(\Leftrightarrow x-2018=0\)( vì \(\frac{1}{1999}+\frac{1}{1995}+\frac{1}{700}\ne0\))

\(\Leftrightarrow x=2018\)

Vậy nghiệm của pt x=2018

c) \(x^3-3x^2+4=0\)

\(\Leftrightarrow x^3+x^2-4x^2+4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x-2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)

Vậy tập hợp nghiệm \(S=\left\{-1;2\right\}\)

30 tháng 11 2017

Xuất phát từ giả thiết , ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

=> \(\dfrac{bc+ac+ab}{abc}=\dfrac{1}{a+b+c}\)

=> \(\left(a+b+c\right)\left(ab+bc+ac\right)=abc\)

=> \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)

=> \(a\left(ab+bc+ac\right)+b\left(ab+bc+ac\right)+c\left(ab+bc+ac\right)-abc=0\)=> a2b + abc + a2c + ab2 + b2c + abc + abc + bc2 + ac2 - abc = 0

=> ab(a + b) + ac( a + c) + bc( b + c) + 2abc = 0

=> ab( a + b + c) + ac( a + b + c ) + bc( b + c) = 0

=> ( a + b + c)a( b + c) + bc( b + c) = 0

=> ( b + c)( a2 + ab + ac + bc) = 0

=> ( b + c)( a + b)( c + a) = 0

Suy ra :

* b = -c

*a = -b

* c = -a

TH1 :Với b = -c

\(VT=\dfrac{1}{a^{1995}}+\dfrac{1}{\left(-c\right)^{1995}}+\dfrac{1}{c^{1995}}=\dfrac{1}{a^{1995}}\)

\(VP=\dfrac{1}{a^{1995}+b^{1995}+c^{1995}}=\dfrac{1}{a^{1995}+\left(-c\right)^{1995}+c^{1995}}=\dfrac{1}{a^{1995}}=VT\)

TH2 : với a = -b

\(VT=\dfrac{1}{\left(-b\right)^{1995}}+\dfrac{1}{b^{1995}}+\dfrac{1}{c^{1995}}=\dfrac{1}{c^{1995}}\)

\(VP=\dfrac{1}{a^{1995}+b^{1995}+c^{1995}}=\dfrac{1}{\left(-b\right)^{1995}+b^{1995}+c^{1995}}=\dfrac{1}{c^{1995}}=VT\)

TH3 . c = -a , Tương tự

Vậy , đẳng thức được Chứng minh