K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(N\left(x\right)=x^2+2x+2020\)

\(\Delta=2^2-4.2020=4-8080=-8076< 0\)

Nên phương trình vô nghiệm 

\(a,x^2-2=0\Leftrightarrow x^2-\left(\sqrt{2}\right)^2=0\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

Vậy \(S=\left\{-\sqrt{2};\sqrt{2}\right\}\)

\(b,x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{0;2\right\}\)

\(c,x^2-2x=0\Leftrightarrow x\left(x-2\right)\) phương trình như câu b, 

\(d,x\left(x^2+1\right)\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(voli\right)\end{matrix}\right.\)( voli là vô lí )

Vậy \(S=\left\{0\right\}\)

5 tháng 3 2023

a,x22=0x2(2)2=0(x2)(x+2)=0[x=2x=2

Vậy �={−2;2}S={2;2}

�,�(�−2)=0⇔[�=0�=2b,x(x2)=0[x=0x=2

Vậy �={0;2}S={0;2}

�,�2−2�=0⇔�(�−2)c,x22x=0x(x2) phương trình như câu b, 

�,�(�2+1)⇔[�=0�2+1=0⇔[�=0�2=−1(����)d,x(x2+1)[x=0x2+1=0[x=0x2=1(voli)( voli là vô lí )

Vậy �={0}S={0}

`@` `\text {Ans}`

`\downarrow`

`a)`

`6 - 2x=0`

`\Rightarrow 2x = 6-0`

`\Rightarrow 2x=6`

`\Rightarrow x=6/2`

`\Rightarrow x=3` 

Vậy, nghiệm của đa thức là `x=3`

`b)`

\(x^{2023}+8x^{2020}?\)

\(x^{2023}+8x^{2020}=0\)

`\Rightarrow `\(x^{2020}\left(x^3+8\right)=0\)

`\Rightarrow `\(\left[{}\begin{matrix}x^{2020}=0\\x^3+8=0\end{matrix}\right.\)

`\Rightarrow `\(\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

`\Rightarrow `\(\left[{}\begin{matrix}x=0\\x^3=\left(-2\right)^3\end{matrix}\right.\)

`\Rightarrow `\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `x={0;-2}.`

19 tháng 6 2023

a) Để tìm nghiệm của đa thức 6 - 2x, ta giải phương trình sau: 6 - 2x = 0

Đưa -2x về bên trái và 6 về bên phải: -2x = -6

Chia cả hai vế của phương trình cho -2: x = 3

Vậy nghiệm của đa thức 6 - 2x là x = 3.

b) Để tìm nghiệm của đa thức x^2023 + 8x^2020, ta đặt đa thức bằng 0: x^2023 + 8x^2020 = 0

Chúng ta có thể nhân chung cho x^2020 để thu được: x^2020(x^3 + 8) = 0

Điều này đồng nghĩa với: x^2020 = 0 hoặc x^3 + 8 = 0

Nghiệm của phương trình x^2020 = 0 là x = 0.

Đối với phương trình x^3 + 8 = 0, chúng ta có thể sử dụng công thức Viète để tìm nghiệm. Tuy nhiên, trong trường hợp này, chúng ta có thể nhận thấy rằng phương trình x^3 + 8 = 0 có một nghiệm rõ ràng là x = -2.

Vậy nghiệm của đa thức x^2023 + 8x^2020 là x = 0 và x = -2.

10 tháng 6 2020

a) Ta có M(x) = 0

=> 2x - 6 = 0

=> x = 3

Vậy ngiệm của đa thức M(x) là 0

b) Ta có N(x) = x2 + 2x + 2000 = x2 + x + x + 1 + 1999 = (x2 + x) + (x + 1) + 1999 = x(x + 1) + (x + 1) + 1999 = (x + 1)(x + 1) + 1999

= (x + 1)2 + 1999 \(\ge\) 1999 > 0

=> Đa thức N(x) vô nghiệm

a, Ta có :

 \(M=2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=3\)

Vậy nghiệm của đa thức là 3 

b, \(N=x^2+2x+2020=0\)

Câu này vô nghiệm thật ... con ko bt giải theo cách trên nên con ấn delta vào và ko thể hiện :v

Ta có : \(2^2-4.1.2020=4-8080=--8076< 0\)

Vậy phương trình vô nghiệm 

1: P(x)=M(x)+N(x)

=-2x^3+x^2+4x-3+2x^3+x^2-4x-5

=2x^2-8

2: P(x)=0

=>x^2-4=0

=>x=2 hoặc x=-2

3: Q(x)=M(x)-N(x)

=-2x^3+x^2+4x-3-2x^3-x^2+4x+5

=-4x^3+8x+2

18 tháng 3 2022

a. cậu thu gọn bằng cách dùng t/c kết hợp và giao hoán 

b. cậu thay từng giá vào biểu thức vừa được rút gọn để tìm

c. thì.... tớ ko biết

11 tháng 5 2022

\(a,Q_{\left(x\right)}=-4x^3+2x-2+2x-x^2-1\\ Q_{\left(x\right)}=-4x^3-x^2+4x-3\\ P_{\left(x\right)}=4x^3-3x+x^2+7+x\\ P_{\left(x\right)}=4x^3+x^2-2x+7\)

\(b,M_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\\ M_{\left(x\right)}=4x^3+x^2-2x+7-4x^3-x^2+4x-3\\ M_{\left(x\right)}=2x+4\)

\(N_{\left(x\right)}=4x^3+x^2-2x+7+4x^2+x^2-4x+3\\ N_{\left(x\right)}=8x^3+2x^2-6x+10\)

\(c,M_{\left(x\right)}=0\\ \Rightarrow2x+4=0\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\)

a: \(P\left(x\right)=4x^3+x^2-2x+7\)

\(Q\left(x\right)=-4x^3-x^2+4x-3\)

b: \(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2+4x-3=2x+4\)

\(N\left(x\right)=8x^3+2x^2-6x+10\)

c: Đặt M(x)=0

=>2x+4=0

hay x=-2

10 tháng 6 2020

M(x) = 2x - 6

M(x) = 0 <=> 2x - 6 = 0

              <=> 2x = 6

              <=> x = 3

Vậy nghiệm của đa thức là 3

N(x) = x2 + 2x + 2020

N(x) = x2 + 2x + 1 + 2019

        = ( x + 1 )2 + 2019

Ta có \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2019\ge2019\)

=> N(x) vô nghiệm 

              

10 tháng 6 2020

a)\(M\left(x\right)=2x-6\)

ta có \(M\left(x\right)=0\)

hay\(2x-6=0\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)

vậy nghiệm của đa thức m(x) là 3

b) \(N\left(x\right)=x^2+2x+2020\)

ta có\(N\left(x\right)=0\)

hay\(x^2+2x+2020=0\)

\(\Leftrightarrow x^2+2x=-2020\)

\(\Leftrightarrow x.x+2x=-2020\)

\(\Leftrightarrow x\left(x+2\right)=-2020\)

còn lại tích của -2020 là bao nhiêu cậu thay vào