K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)

\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)

7 tháng 5 2019

\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x+6\)

\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)

\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)

\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)

\(=6x^4-4x^3+10x^2-11x-4\)

a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)

\(N\left(x\right)=2x^4+3x^2+4x-5\)

\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-3x-7\)

Đặt P(x)=0

=>-3x-7=0

hay x=-7/3

b: Q(x)=N(x)-M(x)

\(=2x^4+3x^2+4x+5+2x^4+3x^2+7x+2\)

\(=4x^4+6x^2+11x+7\)

21 tháng 5 2022

`a)P(x)=M(x)+N(x)`

         `=-2x^4-3x^2-7x-2+3x^2+4x-5+2x^4`

         `=-3x-7`

Cho `P(x)=0`

`=>-3x-7=0`

`=>-3x=7`

`=>x=-7/3`

________________________________________________________

`b)Q(x)+M(x)=N(x)`

`=>Q(x)=N(x)-M(x)`

`=>Q(x)=3x^2+4x-5+2x^4+2x^4+3x^2+7x+2`

`=>Q(x)=4x^4+6x^2+11x-3`

3 tháng 5 2023

a, \(P\left(x\right)=4x^3+2x-3+2x-2x^2-1\\ =4x^3-2x^2+\left(2x+2x\right)+\left(-3-1\right)\\ =4x^3-2x^2+4x-4\)

Bậc của P(x) là 3

\(Q\left(x\right)=6x^3-3x+5-2x+3x^2\\ =6x^3+3x^2+\left(-3x-2x\right)+5\\ =6x^3+3x^2-5x+5\)

Bậc của Q(x) là 3

b, \(M\left(x\right)=P\left(x\right)+Q\left(x\right)=4x^3-2x^2+4x-4+6x^3+3x^2-5x+5\\ =\left(4x^3+6x^3\right)+\left(-2x^2+3x^2\right)+\left(4x-5x\right)+\left(-4+5\right)\\ =10x^3+x^2-x+1\)

3 tháng 5 2023

Mình cảm ơn

16 tháng 6 2020

a) P(x) = 5x^3 - 3x + 2 - x - x^2 + 3/5x + 3

            = 5x^3 - x^2 + (-3x - x + 3/5x) + (2 + 3)

            = 5x^3 - x^2 - 17/5x + 5

Q(x) = -5x^3 + 2x - 3 + 2x - x^2 - 2

        = -5x^3 + (2x + 2x) - x^2 + (-3 - 2)

        = -5x^3 + 4x - x^2 - 5

b) M(x) = P(x) + Q(x)

            =  5x^3 - x^2 - 17/5x + 5 + (-5x^3) + 4x - x^2 - 5

            = (5x^3 - 5x^3) + (-x^2 - x^2) + (-17/5x + 4x)  + (5 - 5)

            = -2x^2 + 3/5x

N(x) = P(x) - Q(x)

        = 5x^3 - x^2 - 17/5x + 5 - (-5x^3 + 4x - x^2 - 5)

        = 5x^3 - x^2 - 17/5x + 5 + 5x^3 - 4x + x^2 + 5

        = (5x^3 + 5x^3) + (-x^2 + x^2) + (-17/5x - 4x) + (5 + 5)

        = 10x^3 - 37/5x + 10

c) M(x) = -2x^2 + 3/5x = 0

<=> -x(2x - 3/5) = 0

<=> -x = 0 hoặc 2x - 3/5 = 0

<=> x = 0 hoặc 2x = 3/5

<=> x = 0 hoặc x = 3/10

Vậy: nghiệm của M(x) là 3/10

a/ M(x)+N(x)=(3x3+3x3)+(x2+2x2)-(3x+x)+(5+9)

                    =6x3+3x2-4x+14

b/ Ta có: M(x)+N(x)-P(x)=6x3+3x2+2x

=> P(x)=M(x)+N(x)-6x3+3x2+2x=-6x

c/ P(x)=-6x=0

=> x=0 là nghiệm đa thức P(x)

d/ Ta có: x2+4x+5

=x.x+2x+2x+2.2+1

=x(x+2)+2(x+2)+1

=(x+2)(x+2)+1

=(x+2)2+1

Mà (x+2)2\(\ne0\)=> Đa thức trên \(\ge1\)

=> Đa thức trên vô nghiệm.

19 tháng 5 2021

`Q(x)=-5x^3+2x-3+2x-x^2-2`

`=-5x^3+4x-5`

`M(x)=P(x)+Q(x)`

`=5x^3-3x+7-5x^3+4x-5`

`=x+2`

`N(x)=P(x)-Q(x)`

`=5x^3-3x+7+5x^3-4x+5`

`=10x^3-7x+12`

b)Đặt `M(x)=0`

`<=>x+2=0`

`<=>x=-2`

Vậy M(x) có nghiệm `x=-2`

1k like đâu haha

19 tháng 5 2021

a) \(P\left(x\right)=5x^3-3x+7-x\\ =5x^3+\left(-3x-x\right)+7\\ =5x^3-4x+7\\ Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\\ =-5x^3+\left(2x+2x\right)+\left(-3-2\right)+x^2\\ =-5x^3+4x-5+x^2\)

 

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)\\ =5x^3-4x+7+\left(-5x^3\right)+4x-5-x^2\\ =\left(5x^3-5x^3\right)+\left(-4x+4x\right)+\left(7-5\right)-x^2\\ =2-x^2\\ N\left(x\right)=P\left(x\right)-Q\left(x\right)\\ =5x^3-4x+7-\left(-5x^3+4x-5+x^2\right)\\ =5x^3-4x+7+5x^3-4x+5-x^2\\ =\left(5x^3+5x^3\right)+\left(-4x-4x\right)+\left(7+5\right)+x^{^2}\\ =10x^3-8x+12+x^2\)

a: \(P\left(x\right)=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b: \(M\left(x\right)=-x^2+2\)

\(N\left(x\right)=10x^3+x^2-8x+12\)

c: Đặt M(x)=0

=>2-x2=0

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)