(x - 7)2 = 1 = 22 . 32 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
a; \(\dfrac{93}{17}\): \(x\) + (- \(\dfrac{21}{17}\)) : \(x\) + \(\dfrac{22}{7}\): \(\dfrac{22}{3}\) = \(\dfrac{5}{14}\)
\(\dfrac{94}{17}\) \(\times\) \(\dfrac{1}{x}\) - \(\dfrac{21}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17}\) \(\times\) \(\dfrac{1}{x}\) + \(\dfrac{3}{7}\) = \(\dfrac{5}{14}\)
\(\dfrac{72}{17x}\) = \(\dfrac{5}{14}\) - \(\dfrac{3}{7}\)
\(\dfrac{72}{17x}\) = - \(\dfrac{1}{14}\)
17\(x\) = 72.(-14)
17\(x\) = - 1008
\(x\) = - 1008 : 17
\(x\) = - \(\dfrac{1008}{17}\)
Vậy \(x\) \(=-\dfrac{1008}{17}\)
b; - \(\dfrac{32}{27}\) - (3\(x\) - \(\dfrac{7}{9}\))3 = - \(\dfrac{24}{27}\)
- \(\dfrac{32}{27}\) + \(\dfrac{24}{27}\) = (3\(x\) - \(\dfrac{7}{9}\))3
(3\(x-\dfrac{7}{9}\))3 = - \(\dfrac{8}{27}\)
(3\(x-\dfrac{7}{9}\))3 = (- \(\dfrac{2}{3}\))3
3\(x-\dfrac{7}{9}\) = - \(\dfrac{2}{3}\)
3\(x\) = - \(\dfrac{2}{3}\) + \(\dfrac{7}{9}\)
3\(x\) = \(\dfrac{1}{9}\)
\(x\) = \(\dfrac{1}{9}\) : 3
\(x\) = \(\dfrac{1}{27}\)
Vậy \(x=\dfrac{1}{27}\)
Bài 1
S₂ = 21 + 23 + 25 + ... + 1001
Số số hạng của S₂:
(1001 - 21) : 2 + 1 = 491
⇒ S₂ = (1001 + 21) . 491 : 2 = 250901
--------
S₄ = 15 + 25 + 35 + ... + 115
Số số hạng của S₄:
(115 - 15) : 10 + 1 = 11
⇒ S₄ = (115 + 15) . 11 : 2 = 715
Bài 2
a) 2x - 138 = 2³.3²
2x - 138 = 8.9
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 210 : 2
x = 105
b) 5.(x + 35) = 515
x + 35 = 515 : 5
x + 35 = 103
x = 103 - 35
x = 78
c) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305
x = 407
d) 20 - [7.(x - 3) + 4] = 2
7(x - 3) + 4 = 20 - 2
7(x - 3) + 4 = 18
7(x - 3) = 18 - 4
7(x - 3) = 14
x - 3 = 14 : 7
x - 3 = 2
x = 2 + 3
x = 5
e) 9ˣ⁻¹ = 9
x - 1 = 1
x = 1 + 1
x = 2
a) Triển khai hằng đẳng thức và rút gọn được 8x + 12 = 0
Từ đó tìm được x = - 3 2
b) Sử dụng hằng đẳng thức, biến đổi phương trình về dạng: (x - 3)(2 x 2 - 4x) = 0
Sưe dụng phương pháp giải PT tích tìm được x ∈ {0; 2; 3}
c) Quy đồng khử mẫu ta được 48x - 16 = 0
Từ đó tìm được x = 1 3
d) Quy đồng khử mẫu ta được 3x + 6 = 2x + 63
Từ đó tìm được x = 57.
Bài 1:
a)-54
b)-8
Bài 2:
a)(x-14):5=415:413
⇔(x-14):5=42
⇔(x-14):5=16
⇔x-14=80
⇔x=94
b)7x-15x=15-175
⇔-8x=-160
⇔x=20
Bài 2:
a: =>x-1=1 hoặc x-1=-1
=>x=2 hoặc x=0
b: =>x+1=-1
hay x=-2
c: =>(135-7x):9=8
=>135-7x=72
=>7x=63
hay x=9
d: =>(x+7)(x-3)<0
=>-7<x<3
e: \(\Leftrightarrow3^{x-3}=18+9=27\)
=>x-3=3
hay x=6
f: =>4-2x=0
hay x=2
a: =1/8-1/8+2/5=2/5
b: =(-1/15-14/15)+(23/27+31/27)=2-1=1
c: \(=\dfrac{3}{7}\left(\dfrac{22}{21}+\dfrac{5}{21}+\dfrac{15}{21}\right)=\dfrac{3}{7}\cdot2=\dfrac{6}{7}\)
d: \(=\dfrac{-8}{9}\cdot\dfrac{3}{2}+\dfrac{1}{9}\cdot\dfrac{-3}{2}=-\dfrac{3}{2}\)
(2x + 1) : 7 = 2² + 3²
(2x + 1) : 7 = 4 + 9
(2x + 1) : 7 = 13
2x + 1 = 13 . 7
2x + 1 = 91
2x = 91 - 1
2x = 90
x = 90 : 2
x = 45
a) x = 2.
b) x = 7.
c) x= 12.
d) x= 45.
e) x = 18.
f) x = 10.
\(\left(x-7\right)^2=1-2^2.3^2+1\)
\(\left(x-7\right)^2=2^2.3^2\)
\(\left(x-7\right)^2=4.9\)
\(\left(x-7\right)^2=36\)
\(\left(x-7\right)^2=\pm6^2\)
\(\Rightarrow\hept{\begin{cases}x-7=6\\x-7=\left(-6\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=13\\x=\left(-1\right)\end{cases}}\)
Vậy ...