K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 11 2018

\(a^3-3a^2+3a-1+5a-8=0\Leftrightarrow\left(a-1\right)^3+5\left(a-1\right)-3=0\) (1)

\(b^3-6b^2+12b-8+5b-7=0\Leftrightarrow\left(b-2\right)^3+5\left(b-2\right)+3=0\) (2)

Cộng (1) với (2) ta được:

\(\left(a-1\right)^3+\left(b-2\right)^3+5\left(a-1\right)+5\left(b-2\right)=0\)

\(\Leftrightarrow\left(a+b-3\right)\left(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2\right)+5\left(a+b-3\right)=0\)

\(\Leftrightarrow\left(a+b-3\right)\left(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right)=0\)

Do \(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5=\left(a-1-\dfrac{b-2}{2}\right)^2+\dfrac{3\left(b-2\right)^2}{4}+5>0\)

\(\Rightarrow a+b-3=0\Rightarrow a+b=3\)

20 tháng 10 2020

ta có: \(a^3-3a^2+8a=9\)

\(\Leftrightarrow a^3-3a^2+8a-9=0\)

\(\Leftrightarrow a^3-3a^2+3a-1+5a-8=0\)

\(\Leftrightarrow\left(a-1\right)^3+5a-8=0\)(1)

và \(b^3-6b^2+17b=15\)biến đổi tương tự như a, ta được: \(\left(b-2\right)^3+5b-7=0\)(2)

Lấy (1) + (2) vế theo vế, ta được: \(\left(a-1\right)^3+\left(b-2\right)^3+5a-8+5a-7=0\)

\(\Leftrightarrow\left(a-1\right)^3+\left(b-2\right)^3+5\left(a+b-3\right)=0\)(3)

áp dụng hằng đẳng thức \(A^3+B^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)với \(A=a-1\)và \(B=b-2\)

ta được (3) <=> \(\left(a+b-3\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2\right]+5\left(a+b-3\right)=0\)

\(\Leftrightarrow\left(a+b-3\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right]=0\)

vì \(\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right]\ne0\)

\(\Rightarrow a+b-3=0\Rightarrow a+b=3\)

22 tháng 10 2020

Ta có: \(a^3-3a^2+8a=9\)

\(\Leftrightarrow\left(a^3-3a^2+3a-1\right)+5a-8=0\)

\(\Leftrightarrow\left(a-1\right)^3+5a-8=0\)

Lại có: \(b^3-6b^2+17b=15\)

\(\Leftrightarrow\left(b^3-6b^2+12b-8\right)+5b-7=0\)

\(\Leftrightarrow\left(b-2\right)^3+5b-7=0\)

Cộng 2 vế trên lại ta được: \(\left(a-1\right)^3+\left(b-2\right)^3+5a+5b-15=0\)

\(\Leftrightarrow\left(a-1+b-2\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2\right]+5\left(a+b-3\right)=0\)

\(\Leftrightarrow\left(a+b-3\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right]=0\)

Mà \(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\)

 \(=\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\frac{1}{4}\left(b-2\right)^2\right]+\frac{3}{4}\left(b-2\right)^2+5\)

\(=\left[a-1-\frac{1}{2}\left(b-2\right)\right]^2+\frac{3}{4}\left(b-2\right)^2+5>0\left(\forall a,b\right)\)

\(\Rightarrow a+b-3=0\Leftrightarrow a+b=3\)

Vậy a + b = 3

29 tháng 9 2017

ap dung bdt am gm

\(\sqrt{1+8a^3}=\sqrt{\left(1+2a\right)\left(4a^2-4a+1\right)}\)\(\le\frac{1+2a+4a^2-2a+1}{2}=\frac{4a^2+2}{2}=2a^2+1\)

\(\Rightarrow\frac{1}{\sqrt{1+8a^3}}\ge\frac{1}{2a^2+1}\)

tuongtu ta cung co \(\frac{1}{\sqrt{1+8b^3}}\ge\frac{1}{2b^2+1};\frac{1}{\sqrt{1+8c^3}}\ge\frac{1}{2c^2+1}\)

\(\Rightarrow\)VT\(\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\)

tiep tuc ap dung bat cauchy-schwarz dang engel ta co

\(VT\ge\frac{1}{2a^2+1}+\frac{1}{2b^2+1}+\frac{1}{2c^2+1}\ge\frac{\left(1+1+1\right)^2}{2\left(a^2+b^2+c^2\right)+3}=\frac{3^2}{6+3}=1\)(dpcm)

dau = xay ra \(\Leftrightarrow a=b=c=1\)

13 tháng 10 2021
Lấy 1 -1 2
13 tháng 10 2021

a) \(\Rightarrow\left(x-3\right)\left(x+4\right)=5.12\)

\(\Rightarrow x^2+x-72=0\)

\(\Rightarrow\left(x-8\right)\left(x+9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-9\end{matrix}\right.\)

b) \(\Rightarrow\left(x+3\right)^2=36\)

\(\Rightarrow\left[{}\begin{matrix}x+3=6\\x+3=-6\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-9\end{matrix}\right.\)

c) \(\Rightarrow2x^2=8\Rightarrow x^2=4\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

13 tháng 10 2021

em cảm ơn nhiều ạ!

 

13 tháng 10 2021

Làm hết á!

 

13 tháng 10 2021

đúng rồi ạ, giúp em với ạ hoặc làm đc câu nào giúp em cũng được ạ