K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+2ab+b^2-2ab\right)+6a^2b^2\)

\(=\left(a^2+2ab+b^2-3ab\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=\left(a+b\right)^2-3ab+3ab\times\left(-2ab\right)+6a^2b^2\)

\(=-3ab-6a^2b^2+6a^2b^2\)

= - 3ab

15 tháng 8 2016

HELP MEEEEEEEEEEEEEEEEEEEEEEEEEEEE!

9 tháng 3 2019

\(3a^2+6b^2=11ab\Leftrightarrow3a^2+6b^2-2ab-9ab=0\)

\(\Leftrightarrow3a\left(a-3b\right)-2b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(3a-2b\right)\left(a-3b\right)=0\)

\(a>b>0\Leftrightarrow3a>2b\Leftrightarrow3a-2b>0\)

\(\Leftrightarrow a=3b\Leftrightarrow...\)

6 tháng 10 2020

a) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 4

<=> x3 - 9x2 + 27x - 27 - ( x3 - 27 ) + 9( x2 + 2x + 1 ) = 4

<=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 = 4

<=> 45x + 9 = 4

<=> 45x = -5

<=> x = -5/45 = -1/9

b) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 17

<=> x( x2 - 25 ) - ( x3 + 8 ) = 17

<=> x3 - 25x - x3 - 8 = 17

<=> -25x - 8 = 17

<=> -25x = 25

<=> x = -1

11 tháng 10 2016

Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)

Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)

\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)

Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)

Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)

Vậy C = 1

Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1

11 tháng 10 2016

Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)

\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)