\(a^3-3a^2+8a=9\)và \(b^3-6b^2+17b=15.\)Tính 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

ta có: \(a^3-3a^2+8a=9\)

\(\Leftrightarrow a^3-3a^2+8a-9=0\)

\(\Leftrightarrow a^3-3a^2+3a-1+5a-8=0\)

\(\Leftrightarrow\left(a-1\right)^3+5a-8=0\)(1)

và \(b^3-6b^2+17b=15\)biến đổi tương tự như a, ta được: \(\left(b-2\right)^3+5b-7=0\)(2)

Lấy (1) + (2) vế theo vế, ta được: \(\left(a-1\right)^3+\left(b-2\right)^3+5a-8+5a-7=0\)

\(\Leftrightarrow\left(a-1\right)^3+\left(b-2\right)^3+5\left(a+b-3\right)=0\)(3)

áp dụng hằng đẳng thức \(A^3+B^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)với \(A=a-1\)và \(B=b-2\)

ta được (3) <=> \(\left(a+b-3\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2\right]+5\left(a+b-3\right)=0\)

\(\Leftrightarrow\left(a+b-3\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right]=0\)

vì \(\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right]\ne0\)

\(\Rightarrow a+b-3=0\Rightarrow a+b=3\)

22 tháng 10 2020

Ta có: \(a^3-3a^2+8a=9\)

\(\Leftrightarrow\left(a^3-3a^2+3a-1\right)+5a-8=0\)

\(\Leftrightarrow\left(a-1\right)^3+5a-8=0\)

Lại có: \(b^3-6b^2+17b=15\)

\(\Leftrightarrow\left(b^3-6b^2+12b-8\right)+5b-7=0\)

\(\Leftrightarrow\left(b-2\right)^3+5b-7=0\)

Cộng 2 vế trên lại ta được: \(\left(a-1\right)^3+\left(b-2\right)^3+5a+5b-15=0\)

\(\Leftrightarrow\left(a-1+b-2\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2\right]+5\left(a+b-3\right)=0\)

\(\Leftrightarrow\left(a+b-3\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\right]=0\)

Mà \(\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\left(b-2\right)^2+5\)

 \(=\left[\left(a-1\right)^2-\left(a-1\right)\left(b-2\right)+\frac{1}{4}\left(b-2\right)^2\right]+\frac{3}{4}\left(b-2\right)^2+5\)

\(=\left[a-1-\frac{1}{2}\left(b-2\right)\right]^2+\frac{3}{4}\left(b-2\right)^2+5>0\left(\forall a,b\right)\)

\(\Rightarrow a+b-3=0\Leftrightarrow a+b=3\)

Vậy a + b = 3

6 tháng 7 2018

Có a3-3ab2=10=>(a3-3ab2)2=100(1)

Có b3-3a2b=5=>(b3-3a2b)2=25(2)

Cộng (1) và (2)

=>(a3-3ab2)2+(b3-3a2b)2=100+25

<=>a6-6a4b2+9a2b4+b6-6a2b4+9a2b4=125

<=>a6+3a2b4+3a4b2+b6=125

<=>(a2+b2)3=125

<=>a2+b2=5

vậy a2+b2=5

20 tháng 8 2016

1/ a/ \(\sqrt{0,9.0,16.0,4}=\sqrt{\frac{9.16.4}{10000}}=\sqrt{\frac{\left(3.4.2\right)^2}{10^4}}=\frac{24}{1010}=\frac{6}{25}\)

b/ \(\sqrt{0,0016}=\sqrt{\frac{16}{100}}=\frac{4}{10}=\frac{2}{5}\)

c/ \(\frac{\sqrt{72}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{36}}{\sqrt{2}}=\sqrt{36}=6\)

d/ \(\frac{\sqrt{2}}{\sqrt{288}}=\frac{\sqrt{2}}{\sqrt{2}.\sqrt{144}}=\frac{1}{\sqrt{144}}=\frac{1}{12}\)

20 tháng 8 2016

2.

a/ \(\frac{2}{a}.\sqrt{\frac{16a^2}{9}}=\frac{2}{a}.\frac{4\left|a\right|}{3}=-\frac{8a}{3a}=-\frac{8}{3}\) (Vì a<0)

b/ \(\frac{3}{a-1}.\sqrt{\frac{4a^2-8a+4}{25}}=\frac{3}{a-1}.\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3.2\left|a-1\right|}{5.\left(a-1\right)}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)

c/ \(\frac{\sqrt{243a}}{\sqrt{3a}}=\frac{9\sqrt{3a}}{\sqrt{3a}}=9\)

d/ \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=\frac{3.3\sqrt{2}.\left|a\right|.\left|b\right|^2}{\sqrt{2}.\left|a\right|.\left|b\right|}=9\left|b\right|\)

4 tháng 9 2017

Cách 1:

Ta có: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3=\left(a^3+3ab^2\right)+\left(b^3+3a^2b\right)=4011\)

          \(\Rightarrow a+b=\sqrt[3]{4011}\)

Mặt khác: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3=\left(a^3+3ab^2\right)-\left(b^3+3a^2b\right)=1\)

             \(\Rightarrow a-b=1\)

Vậy \(a^2-b^2=\left(a+b\right)\left(a-b\right)=\sqrt[3]{4011}.1=\sqrt[3]{4011}\)

Cách 2:

Ta có: \(\left(a^3+3ab^2\right)^2=a^6+6a^4b^2+9a^2b^4\Rightarrow a^6+6a^4b^2+9a^2b^4=2006^2\left(1\right)\)

           \(\left(b^3+3a^2b\right)^2=b^6+6a^2b^4+9a^4b^2\Rightarrow b^6+6a^2b^4+9a^4b^2=2005^2\left(2\right)\)

 \(\left(1\right)\left(2\right)\Rightarrow\left(a^6+6a^4b^2+9a^2b^4\right)-\left(b^6+6a^2b^4+9a^4b^2\right)=2006^2-2005^2=4011\)

                   \(\Rightarrow a^6-3a^4b^2+3a^2b^4-b^3=4011\Rightarrow\left(a^2-b^2\right)^3=4011\Rightarrow a^2-b^2=\sqrt[3]{4011}\)

4 tháng 9 2017

Ta có:a3+3ab2=2006

Và:b3+3a2b=2005

Cộng 2 biểu thức vế với vế ta được:

a3+3ab2+b3+3a2b=2006+2005

=>(a+b)3=4011

=>\(a+b=\sqrt{4011}.\)

Lấy biểu thức thứ nhất trừ biểu thức thứ hai ta dc:

a3+3ab2-b3-3a2b=2006-2005

=>(a-b)3=1

=>a-b=1.

Ta có:\(a^2-b^2=\left(a+b\right)\cdot\left(a-b\right)=\sqrt{4011}\cdot1=\sqrt{4011}.\)

Vậy \(a^2-b^2=\sqrt{4011}.\)

3 tháng 8 2017

Quy đồng lên :3

NV
11 tháng 8 2020

Từ kết quả bài toán suy ngược ra thôi

Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức

NV
11 tháng 8 2020

Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)

Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi