Cho tam giác vuông ABC có cạnh huyền AB=8cm, cạnh BC=6cm. Gọi K là trung điểm của AC. Tính độ dài BK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé?
Xét tam giác ABC vuông tại A, có:
AB mũ 2 + AC mũ 2 = BC mũ 2 ( Pytago )
Căn 88 mũ 2 + AC mũ 2 = 6 mũ 2
88 + AC mũ 2 = 36
AC mũ 2 = 36 - 88
AC mũ 2 = -52
=> AC = - căn 52 = -2 căn 13 ( cm )
Vì K là trung điểm AC => KA = KC = -2 căn 13 : 2 = - căn 13 ( cm )
Xét tam giác ABK vuông tại A, có:
AB mũ 2 + AK mũ 2 = BK mũ 2 ( Pytago )
căn 88 mũ 2 + trừ căn 13 mũ 2 = BK mũ 2
88 + trừ căn 13 = 88 - căn 13
=> BK xấp xỉ 9,2 ( cm )
Nói chung là bài này làm 2 lần Pytago là ra. Đọc kĩ nhé vì không dùng đc kí tự của OLM nên phải viết thế :((( Không hiểu ibx nha
theo pytago \(=>AC=\sqrt{AB^2+BC^2}=\sqrt{6^2+8^2}=10cm\)
K là trung điểm AC =>BK là trung tuyến AC
=>\(BK=\dfrac{1}{2}AC=\dfrac{1}{2}.10=5cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=6^2+8^2=100\)
hay AC=10(cm)
Suy ra: \(BK=\dfrac{AC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
bạn nhấn vào đúng 0 sẽ hiện ra kết quả, mình giải rồi dễ lắm
a, Áp dụng Đ. L. py-ta-go, có:
BC2=AC2+AB2
=>BC2=82+62
=64+36
=100.
=>BC=10cm.
b, cm gì vậy bạn?
c, Xét tgABM và tgMHE, có:
AB=HE(gt)
góc BMA= góc HME(2 góc đối đỉnh)
góc A= góc HME(=90o)
=>tg AMB= tg HME(cgv-gnk)
=>MA = MH(2 cạnh tương ứng)
a: BC=căn 6^2+8^2=10cm
c: Xét ΔABC có
AH,BK là phân giác
AH cắt BK tại O
=>O là tâm đường tròn nội tiếp
=>CO là phân giác của góc ACB
Áp dụng định lí pytago vào ΔABC vuông tại C, ta được
\(AB^2=AC^2+BC^2\)
hay \(AC^2=AB^2-BC^2=8^2-6^2=28\)
⇒\(AC=\sqrt{28}=2\sqrt{7}cm\)
Ta có: K là trung điểm của AC(gt)
⇒\(CK=\frac{AC}{2}=\frac{2\sqrt{7}}{2}=\sqrt{7}cm\)
Áp dụng định lí pytago vào ΔKCB vuông tại C, ta được
\(BK^2=CB^2+CK^2\)
hay \(BK^2=6^2+\left(\sqrt{7}\right)^2=36+7=43cm\)
⇒\(BK=\sqrt{43}cm\)
Vậy: \(BK=\sqrt{43}cm\)