Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow6^2+8^2=BC^2\)
\(\Leftrightarrow BC^2=100\)
\(\Rightarrow BC=10\)
Xét tam giác ABC vuông tại A có AM là trung tuyến
\(\Rightarrow AM=BM=CM=\frac{BC}{2}=\frac{10}{2}=5\)
Vậy AM = 5 cm
ADĐL py-ta-go :
\(BC^2=AB^2+AC^2\) \(\Leftrightarrow BC^2=36+64=100\) \(\Rightarrow BC=10\)
Mà M là trung điểm của BC nên AM là đường trung tuyến của tam giác ABC ,vì tam g ABC vuông nên :
\(BM=MC=AM=\frac{BC}{2}=5\)
a) Áp dụng định lí Py-ta-go ta có :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow8^2+6^2=BC^2\)
\(\Rightarrow64+36=BC^2\)
\(\Rightarrow BC^2=100\Rightarrow BC=\sqrt{100}=10\)
Xét tam giác ABC có :
\(\hept{\begin{cases}NA=NB\left(gt\right)\\NA=NC\left(gt\right)\end{cases}}\)
\(\Rightarrow\)NM là đường trung bình của tam giác ABC .
\(\Rightarrow NM=\frac{1}{2}BC\)
\(\Rightarrow NM=5cm\)
b) Ta có \(BC=10cm\) ( câu a )
\(\Rightarrow BK=CK=5cm\)
Xét tam giác ABC có :
AK là đường trung tuyến (gt)
\(\Rightarrow AK=\frac{1}{2}BC\)
\(\Rightarrow AK=5cm\)
( Trong tam giác vuông đường trung tuyến ứng với cạnh huyền = 1/2 cạnh huyền )
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
Vì AB^2 + AC^2 = BC^2 ( 6^2 + 8^2 = 10^2 )
=> ΔABC vuông tại A
a. Vì Am là trung tuyến của BC
=> AM =1/2 BC
=> AM = 5cm.
b. Xét tứ giác ADME, ta có:
góc DAE + góc AEM + góc EMD + góc MDA = 360°
=> 90° + 90° + góc EMD + 90° = 360°
=> góc EMD = 90°
=> Tứ giác ADME là hình chữ nhật.
a: Xét ΔABC có
E là trung điểm của AC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔABC
Suy ra: EM//AD và EM=AD
hay ADME là hình bình hành
theo pytago \(=>AC=\sqrt{AB^2+BC^2}=\sqrt{6^2+8^2}=10cm\)
K là trung điểm AC =>BK là trung tuyến AC
=>\(BK=\dfrac{1}{2}AC=\dfrac{1}{2}.10=5cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow AC^2=6^2+8^2=100\)
hay AC=10(cm)
Suy ra: \(BK=\dfrac{AC}{2}=\dfrac{10}{2}=5\left(cm\right)\)