K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

Xét △AHB vuông tại H có:

\(AB^2=AH^2+HB^2\) (định lí Pytago)

\(\Rightarrow15^2=AH^2+12^2\\ \Rightarrow AH^2=225-144=81\\ \Rightarrow AH=9\left(cm\right)\)

Xét △AHC vuông tại H có:

\(AC^2=AH^2+HC^2\) (định lí Pytago)

\(\Rightarrow41^2=9^2+HC^2\\ \Rightarrow HC^2=1681-81=1600\\ \Rightarrow HC=40\left(cm\right)\)

25 tháng 2 2020

ΔABH vuông tại H. Áp dụng định lý Pitago ta có:

\(AB^2=BH^2+AH^2\)

\(\Rightarrow AH^2=AB^2-BH^2=15^2-12^2=225-144=81=9^2\)

=> AH = 9

ΔACH vuông tại H. Áp dụng định lý Pitago ta có:

\(AC^2=AH^2-HC^2\)

=> \(HC^2=AC^2-AH^2=41^2-9^2=1681-81=1600\)

=> HC = \(\sqrt{1600}=40\)

Vậy: HC = 40

4 tháng 3 2019

10 tháng 7 2021

 

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có: 

    AB2= BH2 + AH2  

<=> 152= 122+ AH2

<=> AH2= 152- 122= 225- 144= 81

<=> AH= 9 (cm)

 Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .             

        AC2= AH2+ HC2

<=> 412= 92+ HC2

<=> HC2= 412- 92= 1681- 81= 1600

<=>HC= 40 (cm)

 

 

 

 

13 tháng 3 2017

TA CÓ TAM GIÁC ABH VUÔNG TẠI H ;A/D ĐỊNH LÝ PYTAGO TA CÓ

\(AB^2=AH^2+BH^2=>BH^2=AB^2-AH^2\)

=>\(BH^2=15^2-12^2=>BH^2=81=>BH=9'\left(cm\right)\)

=>\(BC=9+16=25\left(cm\right)\)

ta có \(\Delta AHC\) VUÔNG TẠI H A/D ĐỊNHLÝ PYTAGO TA CÓ

\(AC^2=AH^2+HC^2=>AC^2=12^2+16^2\)

=>\(AC^2=400=>AC=20\left(cm\right)\)

6 tháng 2 2020

A B C B H

a. Xét tam giác ABH vuông tại H, theo định lý Py-ta-go ta có:

\(^{AH^2+BH^2=AB^2\Rightarrow12^2+BH^2=15^2\Rightarrow144+BH^2=225}\)

\(\Rightarrow BH^2=225-144\Rightarrow BH^2=81\Rightarrow BH=\sqrt{81}=9\)

Vì H nằm giữa B và C \(\Rightarrow BH+HC=BC\Rightarrow9+HC=25\Rightarrow HC=25-9\Rightarrow HC=16\)

Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:

\(AH^2+HC^2=AC^2\Rightarrow12^2+16^2=AC^2\Rightarrow144+256=AC^2\)

\(\Rightarrow AC^2=400\Rightarrow AC=\sqrt{400}=20\)

Vậy BH = 9, HC = 16 và AC = 20.

- Bạn xem lại câu b nhé :))

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

11 tháng 3 2020

a) bạn tự vẽ hình nhé

sau khi kẻ, ta có AC=AH+HC=11

mà tam giác ABH vuông tại H

=> theo định lý Pytago => AH^2+BH^2=AB^2

=>BH=căn bậc 2 của 57

cũng theo định lý Pytago

=>BC^2=HC^2+BH^2

=>BC=căn bậc 2 của 66

11 tháng 3 2020

b) bạn tự vẽ hình tiếp nha

ta có M là trung điểm của tam giác ABC => AM là đường trung tuyến của tam giác ABC vuông tại A

=>AM=MB=MC

theo định lý Pytago =>do tam giác HAM vuông tại H

=>HM^2+HA^2=AM^2

=>HM=9 => HB=MB-MH=32

=>AB^2=AH^2+HB^2 =>AB=căn bậc 2 của 2624

tương tự tính được AC=căn bậc 2 của 4100

=> AC/AB=5/4

CHÚC BẠN HỌC TỐT!!!

a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có

góc NAH chung

Do đó: ΔANH\(\sim\)ΔAHC

b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

12 tháng 5 2022

refer

a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có

AM chung

ME=MH

Do đó: ΔAEM=ΔAHM

b: Xét ΔBHE có 

BM là đường cao

BM là đường trung tuyến

Do đó: ΔBHE cân tại B

Xét ΔAEB và ΔAHB có 

AE=AH

EB=HB

AB chung

Do đó: ΔAEB=ΔAHB

Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900

hay AE⊥EB

BC=25cm

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20cm

5 tháng 1 2022

AH=12

10 tháng 1 2017

sai số liệu

12 tháng 1 2017

đúng rồi bạn

25 tháng 2 2021

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(\Rightarrow CH=BC-BH=25-9=16\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=25-9=16(cm)

Vậy: CH=16cm