Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) áp dụng đ/l pitago zô tam giác zuông abh ta đc
=> AB^2=AH^2+HB^2
=> AH^2=Ab^2-HB^2
=> AH=24
áp dụng dl pitago zô tam giác zuông ahc
=> AC^2=AH^2+HC^2
=> AC=40
b) Tco : CH+HB=32+18=50
Tam giac ABC có
\(\hept{\begin{cases}AB^2+AC^2=40^2+30^2=2500\\BC^2=50^2=2500\end{cases}}\)
=> \(AB^2+AC^2=BC^2\)
=> tam giác abc zuông
Bài 1:
A C B
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
A B C D
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
TA CÓ TAM GIÁC ABH VUÔNG TẠI H ;A/D ĐỊNH LÝ PYTAGO TA CÓ
\(AB^2=AH^2+BH^2=>BH^2=AB^2-AH^2\)
=>\(BH^2=15^2-12^2=>BH^2=81=>BH=9'\left(cm\right)\)
=>\(BC=9+16=25\left(cm\right)\)
ta có \(\Delta AHC\) VUÔNG TẠI H A/D ĐỊNHLÝ PYTAGO TA CÓ
\(AC^2=AH^2+HC^2=>AC^2=12^2+16^2\)
=>\(AC^2=400=>AC=20\left(cm\right)\)
A B C E F 1 2 H
A)TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN
=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)
XÉT\(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)CÓ
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{B}=\widehat{C}\left(GT\right)\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(G-C-G\right)\)
B)
TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN
=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)
C)VÌ\(\Delta ABH=\Delta ACH\left(CMT\right)\)
=>HB=HC (HAI CẠNH TƯƠNG ỨNG)
D)XÉT\(\Delta AEH\)VÀ\(\Delta AFH\)CÓ
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
D) XÉT TAM GIÁC LÀ ĐƯỢC
a) HC=BC-BH=25-9=16 (cm)
Xét \(\Delta\)BHA có:
AH2=AB2-BH2=152-92=144
\(AH=\sqrt{144}=12\left(cm\right)\)
Xét \(\Delta\)AHC có:
AC2=AH2+HC2=122+162=400
=> AC=20(cm)
b) AB2+AC2=152+202=625
BC2=252=625
=> BC2=AB2+AC2
=> \(\Delta\)ABC vuông tại A (đpcm)
A B C B H
a. Xét tam giác ABH vuông tại H, theo định lý Py-ta-go ta có:
\(^{AH^2+BH^2=AB^2\Rightarrow12^2+BH^2=15^2\Rightarrow144+BH^2=225}\)
\(\Rightarrow BH^2=225-144\Rightarrow BH^2=81\Rightarrow BH=\sqrt{81}=9\)
Vì H nằm giữa B và C \(\Rightarrow BH+HC=BC\Rightarrow9+HC=25\Rightarrow HC=25-9\Rightarrow HC=16\)
Xét tam giác AHC vuông tại H, theo định lý Py-ta-go ta có:
\(AH^2+HC^2=AC^2\Rightarrow12^2+16^2=AC^2\Rightarrow144+256=AC^2\)
\(\Rightarrow AC^2=400\Rightarrow AC=\sqrt{400}=20\)
Vậy BH = 9, HC = 16 và AC = 20.
- Bạn xem lại câu b nhé :))