Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A C B
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
A B C D
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
TAM GIÁC ABC CÂN TẠI A NÊN AC =AB=8+3=11 CM
TAM GIAC AHB VUONG TAI H
THEO ĐỊNH LÝ PYTAGO T CÓ AB^2=AH^2-BH^2
=>BH^2=AB^2-AH^2=>BH^2=11^2-8^2=>BH^2=121-64=57
TAM GIÁC BHC VUÔNG TẠI H
THEO ĐỊNH LÝ PYTAGO TA CÓ
BH^2+HC^2=BC^2=>57+9=66
=>BC KHOẢNG 7,94
A B C H 8cm 3cm
Ta có AC = AH + HC = 8 + 3 = 11 (cm)
Mà AB = AC ( tam giác ABC cân tại A ) => AB = 11 (cm)
Tam giác ABH vuông tại H => Áp dụng định lý pytago ta có :
AB2 = AH2 + BH2 => BH2 = AB2 - AH2 = 112 - 82 = 57
=> BH = \(\sqrt{57}\)
Tam giác BHC vuông tại H => Áp dụng định lý pytago ta có :
BC2 = BH2 + HC2 = 57 + 32 = 66
=> BC = \(\sqrt{66}\)
A B C M 40 41
\(\Delta AHM\)co:
\(AM^2=AH^2+HM^2\)(AP dung dinh ly Pytago)
\(\Rightarrow41^2=40^2+HM^2\)
\(\Rightarrow HM^2=41^2-40^2=81\)
\(\Rightarrow HM=\sqrt{81}=9\)
Ti so do dai 2 canh goc vuong la:
\(\frac{AH}{HM}=\frac{40}{9}\)
HTDT
\(\Delta ABC\)vuông tại A , trung tuyến AM=41 nên MB=MC=41 ta tính được HM=9,HB=32,HC=50 .Xét \(\Delta ABH\)và \(\Delta ACH\)vuông tại H , ta có :\(^{AB^2=40^2+32^2=2624^2;AC^2=40^2+50^2=4100\Rightarrow\frac{AB^2}{AC^2}=\frac{2624}{4100}=\frac{16}{25}\Rightarrow\frac{AB}{AC}=\frac{4}{5}}\)
a) bạn tự vẽ hình nhé
sau khi kẻ, ta có AC=AH+HC=11
mà tam giác ABH vuông tại H
=> theo định lý Pytago => AH^2+BH^2=AB^2
=>BH=căn bậc 2 của 57
cũng theo định lý Pytago
=>BC^2=HC^2+BH^2
=>BC=căn bậc 2 của 66
b) bạn tự vẽ hình tiếp nha
ta có M là trung điểm của tam giác ABC => AM là đường trung tuyến của tam giác ABC vuông tại A
=>AM=MB=MC
theo định lý Pytago =>do tam giác HAM vuông tại H
=>HM^2+HA^2=AM^2
=>HM=9 => HB=MB-MH=32
=>AB^2=AH^2+HB^2 =>AB=căn bậc 2 của 2624
tương tự tính được AC=căn bậc 2 của 4100
=> AC/AB=5/4
CHÚC BẠN HỌC TỐT!!!