Cho \(\Delta\)ABC,M là trung điểm của AB.Đường thẳng qua M và song song với BC cắt AC ở I,đường thẳng qua I song ong với AB cắt BC ở K.Chứng minh rằng:
a)AM=IK b) \(\Delta\)AMI= \(\Delta\)IKC c)AI=IC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(\hept{\begin{cases}AM=MB\\MI//BC\end{cases}}\Rightarrow IA=IC\left(1\right)\)
Do :
\(\hept{\begin{cases}IA=IC\left(cmt\right)\\IK//AB\end{cases}}\Rightarrow CK=BK\left(2\right)\)
Từ (1) và (2) => IK là đường trung bình của \(\Delta ABC\)
nên \(IK=\frac{1}{2}AB\Rightarrow IK=AM\left(dpcm\right)\)
b) Xét \(\Delta AMI\)và \(\Delta IKC\):
\(CI=CA\left(cmt\right)\)
\(IK=AM\left(cmt\right)\)
\(CK=IM\)( Do \(CK=BK\))
\(\Rightarrow\Delta AMI=\Delta IKC\left(c.c.c\right)\)
Vậy \(\Delta AMI=\Delta IKC\left(c.c.c\right)\)
c) Do \(\Delta AMI=\Delta IKC\left(c.c.c\right)\left(cmt\right)\)
\(\Rightarrow IA=IC\left(dpcm\right)\)
Bạn hỏi vì sao \(CK=IM\) nên Mk xin giải thích vì sao \(CK=IM\)
Cách 1:
Có:
=> IM là đường trung bình của \(\Delta ABC\)
=> \(IM=\frac{1}{2}BC\Leftrightarrow IM=CK\left(=BK\right)\)
Cách 2 : Có \(IA=IC\left(cmt\right)\)
\(\widehat{CIK}=\widehat{IAM}\)
\(IK=AM\)
\(\Rightarrow\Delta AIM=\Delta ICK\left(c.g.c\right)\)
\(\Rightarrow CK=IM\)( 2 cạnh tương ứng )
~ học tốt ~
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,
MK nêu cách giải thôi nha! Lười quá!!!
a, CM tứ giác MEAD là hình bình hành.( bạn tự cm)
Vì tứ giác MEAD là hình bình hành nên 2 đường chéo DE và AM cắt nhau tại trung điểm mỗi đường.
Mà điểm \(I\) là trung điểm của AM Suy ra \(I\) cũng là TĐ của DE
\(\Rightarrow I\in DE\) Suy ra \(I,D,E\) thẳng hàng
b, Kẻ \(IK\bot BC\) và \(AH\bot BC\) \((K,H \in BC)\)
Ta có
Vì \(IA=IM\) và \(IK//AH\)
\(\Rightarrow MK=KH\) \(\Rightarrow \) \(IK\) là đường trung bình của \(\Delta AMH\)
\(\Rightarrow IK=\dfrac{AH}{2}\) (1)
Lại có: Áp dụng định lí Py-ta-go cho \(\Delta AHC\)
\(\Rightarrow AH^2=AC^2-HC^2\)
\(=AC^2-{\left(\dfrac{BC}{2}\right)}^2\) \(=AC^2-{\left(\dfrac{AC}{2}\right)}^2\) ( Do \(\Delta ABC\) đều)
\(=AC^2-\dfrac{AC^2}{4}=\dfrac{3AC^2}{4}\)
\(\Rightarrow AH=\dfrac{\sqrt3 AC}{4}\) (2)
Từ (1)(2) suy ra \(IK=\dfrac{\sqrt3}{8}AC\)
Vì AC không đổi nên \(IK\) ko đổi.
Khoảng cách từ \(I\) đến BC ko đổi suy ra khi M di chuyển trên BC thì \(I\) di chuyển trên đường thẳng song song với BC
và cách BC một khoảng =\(\dfrac{\sqrt3}{8}AC=\dfrac{\sqrt3}{8}BC\)
Kẻ MK
Ta có \(AB//IK\rightarrow\widehat{BMK}=\widehat{MKI}\)(So le trong )
\(MI//BC\rightarrow\widehat{MKB}=\widehat{IMK}\)( So le trong)
Xét \(\Delta BMK\)và \(\Delta IKM\)có
\(\widehat{BMK}=\widehat{MKI}\left(cmt\right)\)
MK là cạnh chung
\(\widehat{MKB}=\widehat{IMK}\left(cmt\right)\)
\(\Rightarrow\Delta BMK=\Delta IKM\left(g.c.g\right)\)
\(\Rightarrow BM=IK\)(2 cạnh tương ứng)
Mà M là trung điểm của AB\(\Rightarrow AM=BM\)
\(\Rightarrow IM=BM=AM\)
b,Ta có :\(AB//IK;M\in AB\)
\(\Rightarrow AM=IK\)
\(\widehat{A}=\widehat{I_1}\)(Đồng vị)
\(AB//IK\)
\(\Rightarrow\widehat{ABK}=\widehat{IKC}\)
\(MI//BC\)
\(\Rightarrow\widehat{AMI}=\widehat{ABK}\)(2 góc đồng vị)
\(\widehat{AMI}=\widehat{IKC}\)
Xét \(\Delta AMI\)và\(\Delta IKC\) có
\(\widehat{KIC}=\widehat{A}\)
\(AM=IK\)
\(\widehat{AMI}=\widehat{IKC}\)
\(\Rightarrow\Delta AMI=\Delta IKC\left(g.c.g\right)\)
c, Ta có \(\Delta AMI=\Delta IKC\left(cmt\right)\)
\(\rightarrow AI=IC\)(2 cạnh tương ứng )