Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua N kẻ đường thẳng NP // AB (P thuộc BC)
Khi đó ta thấy ngay \(\Delta EBN=\Delta PNB\left(g-c-g\right)\Rightarrow EB=PN;EN=PB\) (1)
Do NP // AB nên \(\widehat{NPC}=\widehat{EPB}\); do DM // BC nên \(\widehat{ADM}=\widehat{EPB}\)
Suy ra \(\widehat{ADM}=\widehat{NPC}\)
Ta cũng có \(\widehat{DAM}=\widehat{PNC}\) (Hai góc đồng vị)
\(\Rightarrow\Delta DAM=\Delta PNC\left(g-c-g\right)\)
\(\Rightarrow AM=PC\) (2)
Từ (1) và (2) suy ra DM + EN = PC + BP = BC.
các bạn tự vẽ hình, bài này đơn giản: vì AD//ME nên góc E = góc A2 (đồng vị)
và góc F2 = góc A1 (đồng vị)
mà góc A1 = góc A2 (T/c phân giác) nên E = F2 , mặt khác góc F1 = góc F2 (đối đỉnh)
nên suy ra góc E = góc F1 hay là góc AFE = AEF (điều phải chứng minh)
b, kẻ AO // BC
góc OAK so le trong KFB
=> góc OAK = góc KFB (tc)
xét tam giác AOK và tam giác BMK có : AK = KM (do ...)
góc AKO = góc MBK (đối đỉnh)
=> tam giác AOK = tam giác BMK (g-c-g)=
=> AO = MB (đn)
có AO // BC mà góc EOA đồng vị EMC
=> góc EOA = góc EMC (tc) (1)
gọi EF cắt tia phân giác của góc BCA tại T
EF _|_ CT (gt)
=> tam giác ETC vuông tại T và tam giác CTF vuông tại T
=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM
có có TCM = góc ECT do CT là phân giác của góc ACB (gt)
=> góc CET = góc TMC và (1)
=> góc AEO = góc AOE
=> tam giác AEO cân tại A (tc)
=> AE = AO mà AO = BM
=> AE = BM
a, MB = MN (gt)
M nằm giữa N và B
=> M là trung điểm của NP (đn)
NI // AB (gt); xét tam giác ANB
=> I là trung điểm của AN (đl)
b,