K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A C B M I K

a) Ta có :

\(\hept{\begin{cases}AM=MB\\MI//BC\end{cases}}\Rightarrow IA=IC\left(1\right)\)

Do :

\(\hept{\begin{cases}IA=IC\left(cmt\right)\\IK//AB\end{cases}}\Rightarrow CK=BK\left(2\right)\)

Từ (1) và (2) => IK là đường trung bình của \(\Delta ABC\)

nên \(IK=\frac{1}{2}AB\Rightarrow IK=AM\left(dpcm\right)\)

b) Xét \(\Delta AMI\)và \(\Delta IKC\):

\(CI=CA\left(cmt\right)\)

\(IK=AM\left(cmt\right)\)

\(CK=IM\)( Do \(CK=BK\))

\(\Rightarrow\Delta AMI=\Delta IKC\left(c.c.c\right)\)

Vậy \(\Delta AMI=\Delta IKC\left(c.c.c\right)\)

c) Do \(\Delta AMI=\Delta IKC\left(c.c.c\right)\left(cmt\right)\)

\(\Rightarrow IA=IC\left(dpcm\right)\)

Bạn hỏi vì sao \(CK=IM\) nên Mk xin giải thích vì sao \(CK=IM\)

Cách 1:

Có:

  • I là trung điểm của CA ( do IA=IC )
  • M là trung điểm của AB (gt)

=> IM là đường trung bình của \(\Delta ABC\)

=> \(IM=\frac{1}{2}BC\Leftrightarrow IM=CK\left(=BK\right)\)

Cách 2 : Có \(IA=IC\left(cmt\right)\)

\(\widehat{CIK}=\widehat{IAM}\)

\(IK=AM\)

\(\Rightarrow\Delta AIM=\Delta ICK\left(c.g.c\right)\)

\(\Rightarrow CK=IM\)( 2 cạnh tương ứng )

~ học tốt ~

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM =AB...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

29 tháng 7 2018

mình cũng vừa trả lời nhưng ko có điểm

21 tháng 12 2018

cần hình ko

21 tháng 12 2018

không cần đâu bạn ah

22 tháng 2 2016

a/ ta có M= <ACD ( cùng phụ với <ADC)

mà <M+ < MEA= 90

     <ACD+ <ADC= 90

suy ra : <MEA=<ADC

xét tam giác MEA và ACD :

<MEA=<ADC(cmt)

AE=AD

2 tam giác này bằng nhau thep trường hợp : cạn góc vuông - góc nhọn kề

4 tháng 2 2020

C B M F N A I E O K T

b, kẻ AO // BC

góc OAK so le trong KFB 

=> góc OAK = góc KFB (tc)

xét tam giác AOK và tam giác BMK có : AK = KM (do ...)

góc AKO = góc MBK (đối đỉnh)

=> tam giác AOK = tam giác BMK (g-c-g)= 

=> AO = MB (đn)

có AO // BC mà góc EOA đồng vị EMC 

=> góc EOA = góc EMC (tc)    (1)

gọi EF cắt tia phân giác của góc BCA tại T 

EF _|_ CT (gt)

=> tam giác ETC vuông tại T và tam giác CTF vuông tại T 

=> góc CET = 90 - góc ECT và góc TMC = 90 - góc TCM 

có có TCM = góc ECT do CT là phân giác của góc ACB (gt)

=> góc CET = góc TMC   và (1)

=> góc  AEO = góc AOE 

=> tam giác AEO cân tại A (tc)

=> AE = AO mà AO = BM 

=> AE = BM

4 tháng 2 2020

a, MB = MN (gt)

M nằm giữa N và B

=> M là trung điểm của NP (đn)

NI // AB (gt); xét tam giác ANB 

=> I là trung điểm của AN (đl)

b,