\(90^o\)và AB=AC.Gọi Klaf trung điểm của BC.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

a/ Xét tam giác AKB và tam giác AKC có

AB=AC(gt)

BK=CK(K là trung điểm của BC)

AK là cạnh chung

Vậy tam giác AKB=tam giác AKC(c-c-c)

b/Ta có tam giác AKB=tam giác AKC (c/m trên)

--> góc AKB=góc AKC 

Mà AKB+AKC=180(kề bù)

--> góc AKB=góc AKC=90 độ

Vậy AK vuông góc với BC

c/ Sai đề Làm sao mà AC//AK được? (vì nó hội tụ tại điểm A)

1 tháng 1 2016

A B C K E

không đẹp cho lắm thông cảm nhé

12 tháng 12 2015

a)hai tam giac nay =nhau vi

+Góc B=Góc C(=45)

+BK=KC(do K trung diem)

+nên =nhau thợp cạnh góc vuông góc nhọn kề

mà BKA+AKC=180(kề bù)

và BKA=AKC(2 tam giác =nhau)

nên BKA=90

hay BK vuông AK

b)Tam giác ABC có AK trung tuyến ứng vs nửa cạnh huyền nên KA=KC=BK

Nên tg KAC cân ở K

nên góc KAC=KCA

mà KAC=45 (AK trung tuyến tg ABC vuông cân nên cũng là đường phân giác suy ra góc BAK=KAC)

Nên KCA=45

mặt khác KCA+ACE=90(doKC vuông EC)

suy ra ACE=45

xét ACE=KAC=45

mà 2 góc này so le

nên AK//CE

c)Tgiác BCE có BCE 90 nên là tg vuông

nên CBE+BEC=90

mà EBC=45(do tg ABC Vuông cân)

suy ra BEC=90

 

17 tháng 12 2016

Bạn Lê Nguyễn Minh Khoa ơi í c góc BEC phải =45 độ chứ đâu phải là 90đâu

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

6 tháng 12 2016

Ta có hình vẽ:

A B C M E F N x y

Câu d mình quên kí hiệu vuông góc rồi, bạn tự bổ sung nhé

a/ Xét tam giác AMB và tam giác AMC có:

AB = AC (GT)

BM = MC (GT)

AM : cạnh chung

=> tam giác AMB = tam giác AMC (c.c.c)

b/ Xét tam giác AEM và tam giác AFM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

AM : cạnh chung

\(\widehat{EAM}\)=\(\widehat{FAM}\) ( vì tam giác AMB = tam giác AMC)

Vậy tam giác AEM = tam giác AFM (g.c.g)

=> AE = AF (2 cạnh tương ứng)

c/ Xét tam giác EBM và tam giác FCM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

BM = MC (GT)

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác EBM = tam giác FCM

(theo trường hợp cạnh huyền góc nhọn)

=> BE = FM (2 cạnh tương ứng) (1)

Ta có: EM: cạnh chung (2)

Ta có: 2 tam giác AEM và tam giác AFM đối xứng qua cạnh chung AM và có: \(\widehat{E}\)=\(\widehat{F}\)=900

=> \(\widehat{EMF}\) = 900 = \(\widehat{BEM}\) (3)

Từ (1),(2),(3) => tam giác BEM = tam giác EFM

=> \(\widehat{FEM}\)=\(\widehat{EMB}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> EF // BC

d/ Xét tam giác ABN và tam giác ACN có:

AB = AC (GT)

\(\widehat{BAN}\)=\(\widehat{CAN}\) (vì tam giác AMB = tam giác AMC)

AN: chung

=> tam giác ABN = tam giác ACN (c.g.c)

BN = CN ( 2 cạnh tương ứng)

Xét tam giác BMN và tam giác CMN có:

MN: chung

BM = MC (GT)

BN = CN (đã chứng minh)

=> tam giác BMN = tam giác CMN (c.c.c)

-Ta có: tam giác ABM = tam giác ACM (câu a)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)

=> góc AMB = góc AMC = 900

-Ta có: tam giác BMN = tam giác CMN (đã chứng minh)

=> \(\widehat{BMN}\)=\(\widehat{CMN}\) (2 góc tương ứng)

\(\widehat{BMN}\)+\(\widehat{CMN}\)=1800 (kề bù)

=> góc BMN = góc CMN = 900

Ta có: \(\widehat{AMB}\)+\(\widehat{BMN}\)=900+900 = 1800

hay \(\widehat{AMC}\)+\(\widehat{CMN}\)=900+900 = 1800

hay A,M,N thẳng hàng

7 tháng 12 2016

cảm ơn bạn nhiều

 

a: \(\widehat{C}=90^0-30^0=60^0\)

c: Xét ΔCAD và ΔCMD có 
CA=CM

\(\widehat{ACD}=\widehat{MCD}\)

CD chung

Do đó: ΔCAD=ΔCMD

18 tháng 12 2016

a,b) A B C M D x y K 60* 30*

c) Vì CD là tia phân giác của \(\widehat{C}\) nên \(\widehat{ACD}=\widehat{MCD}=\frac{60}{2}=30\)*

Xét ΔACD và ΔMCD, ta có:

CA=CM (gt)

\(\widehat{ACD}=\widehat{MCD}=30\)* (cmt)

Chung cạnh CD

Do đó: ΔACD = ΔMCD (c.g.c)

d) Mk sửa lại đề là cắt xy tại K bạn nhé !!!

Vì AK || DC nên \(\widehat{ACD}=\widehat{CAK}=30\)* (So le trong)

Xét ΔDAC va ΔKCA, ta có:

\(\widehat{ACD}=\widehat{CAK}=30\)* (cmt)

Chung cạnh AC

\(\widehat{DAC}=\widehat{KCA}=90\)*

Do đó: ΔDAC = ΔKCA (g.c.g)

=> AK=CD (2 cạnh tương ứng).

e) Trong ΔAKC có: \(\widehat{CAK}+\widehat{AKC}+\widehat{KCA}=180\)*

\(\Rightarrow\widehat{AKC}=180-\left(\widehat{CAK}+\widehat{KCA}\right)\)

\(\Rightarrow\widehat{AKC}=180-\left(30+90\right)\)

haha \(\Rightarrow\widehat{AKC}=60\)* ok

 

17 tháng 12 2016

góc C=60 độ