Cho góc xOy< 180o, trên tia Ox lấy điểm A và B. Trên tia Oy lấy điểm C và D sao cho OA=OC, OB=OD (OA<OB)
a) CM: Tam giác OBC= ODA
b) CM: OK là p/giác của xOy (K là giao điểm của CB và AD)
Mọi người giải hộ em với ạ!
Thanks <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg OAD và tg OCB có
\(\left\{{}\begin{matrix}\widehat{xOy}.chung\\OA=OC\\OB=OD\end{matrix}\right.\Rightarrow\Delta OAD=\Delta OCB\left(c.g.c\right)\\ \Rightarrow AD=BC\left(2.cạnh.tương.ứng\right)\)
a) Chứng minh: AD = BC.
Xét ∆OAD và ∆OBC có:
OA = OB (gt);
ˆAODAOD^ chung;
OD = OC (gt)
Do đó ∆OAD = ∆OBC (c.g.c)
Suy ra AD = BC (hai cạnh tương ứng)
b) Chứng minh: ∆EAC = ∆EBD.
Vì ∆OAD = ∆OBC (câu a)
Nên ˆA2=ˆB2A^2=B^2 (hai góc tương ứng)
Mà ˆA1+ˆA2=180oA^1+A^2=180o, ˆB1+ˆB2=180oB^1+B^2=180o (kề bù)
Do đó ˆA1=ˆB1A^1=B^1.
Mặt khác, OA = OB, OC = OD
Suy ra OC – OA = OD – OB
Do đó AC = BD
Xét ∆EAC và ∆EBD có:
ˆA1=ˆB1A^1=B^1 (cmt);
AC = BD (cmt);
ˆOCB=ˆODAOCB^=ODA^ (vì ∆OAD = ∆OBC)
Do đó ∆EAC = ∆EBD (g.c.g).
c) Chứng minh: OE là tia phân giác của góc xOy.
Vì ∆EAC = ∆EBD (câu b)
Nên AE = BE (hai cạnh tương ứng).
Xét ∆OAE và ∆OBE có:
OA = OB (gt);
Cạnh OE chung;
AE = BE (cmt)
Do đó ∆OAE và ∆OBE (c.c.c)
Suy ra ˆAOE=ˆBOEAOE^=BOE^ (hai góc tương ứng)
Hay OE là phân giác của góc xOy.
xet hai tam giac OBC va OAD co OA = OC , OB = OD
(theo gia thiet) va goc O chung. Suy ra hai tam giac OBC = tam giac OAD(C.G.C)
Suy Ra AD = BC
Xét ΔODB và ΔOCA có
\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\left(\dfrac{3}{6}=\dfrac{4}{8}\right)\)
\(\widehat{O}\) chung
Do đó: ΔODB đồng dạng với ΔOCA
=>\(\dfrac{OD}{OC}=\dfrac{OB}{OA}\)
=>\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
Xét ΔODC và ΔOBA có
\(\dfrac{OD}{OB}=\dfrac{OC}{OA}\)
\(\widehat{O}\) chung
Do đó: ΔODC đồng dạng với ΔOBA
=>\(\dfrac{DC}{BA}=\dfrac{OC}{OA}\)
=>\(\dfrac{DC}{5}=\dfrac{6}{8}=\dfrac{3}{4}\)
=>\(DC=3\cdot\dfrac{5}{4}=\dfrac{15}{4}=3,75\left(cm\right)\)
a) Xét \(\Delta\)OBC và \(\Delta\)ODA có:
OC = OA ( gt)
^BOC = ^DOA
OB = OD
=> \(\Delta\)OBC = \(\Delta\)ODA ( c.g.c) (1)
b) Có: OB = OD ; OA = OC ( gt)
=> OB - OA = OD - OC
=> AB = CD ( 2)
Từ (1) => ^OBC = ^ODA => ^ABK = ^CDK ( 3)
Từ (1) => ^OCB = ^OAD => ^BAK = ^DCK (4)
Từ (2) ; (3) ; (4) => \(\Delta\)AKB = \(\Delta\)CKD => AK = CK
Xét \(\Delta\)OAK và \(\Delta\)OCK có:
OA = OC
^OAK = ^OCK
AK = CK
=> \(\Delta\)OAK = \(\Delta\)OCK
=> ^AOK = ^COK
=> OK là phân giác của ^xOy.
Em cảm ơn cô nhìu ạ <3