K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

Vẽ hình: Bạn tự vẽ được hăm?
a) Ta có: AE // MF; AF // ME
=> Tứ giác AFME là HBH.
b) HBH AFME + đk \(\widehat{FAE}=90^o\)\(\Rightarrow\)AFME là HCN.
Mà \(\widehat{FAE}=90^O\Leftrightarrow\widehat{BAC}=90^O\)\(\Leftrightarrow\)\(\Delta ABC\)vuông tại A.

25 tháng 10 2019
Giải :

A B C M F E

a, Xét \(\diamond AFME\), có :

EM // AF (vì EM // AB)

FM // AE (vì FM // AC)

\(\Rightarrow\diamond AFME\) là hình bình hành.

b, Để \(\diamond AFME\) là hình chữ nhật \(\Rightarrow\text{​​}\diamond AFME\) có \(\widehat{A}=\widehat{F}=\widehat{M}=\widehat{E}=90^0\) \(\Rightarrow\bigtriangleup ABC\) có \(\widehat{A}=90^0\) hay \(\bigtriangleup ABC\) vuông tại A.

31 tháng 10 2021

Vì ME//AC và MF//AB nên AEMF là hbh

Mà I là trung điểm AM nên I là trung điểm EF

Do đó E đx F qua I

31 tháng 3 2019

Giải : 

A B C D H x E G

a/ Vì \(DH\perp BC\)

        \(Cx\perp BC\)

\(\Rightarrow DH//Cx\)

b/ Xét , có :

\(\widehat{HDE}=\widehat{CED}\text{ (hai góc so le trong của CE//DH)}\)

\(HD=EC\text{ (gt)}\)

\(\widehat{DHC}=\widehat{ECH}\left(=90^0\right)\)

\(\Rightarrow\Delta DHG=\Delta ECG\left(g.c.g\right)\).

c/ Vì \(\Delta DHG=\Delta ECG\left(c.m.t\right)\Rightarrow DG=GC\text{ (hai cạnh tương ứng)}\)

\(\Rightarrow\text{G là trung điểm của đoạn thẳng DE}\).

31 tháng 3 2019

Đề thi mà

21 tháng 3 2016

Tứ giác BEMF là hình bình hành ( hai cặp cạnh đối song song)

Kẻ AH vuông góc BC tại H , AH cắt MF tại G.

Ta có diện tích ABC=1/2AH*BC và S bemf=fm*gh nên Sbemf/Sabc=2*HG/AH*FM/BC

Gọi AM = x; MC = y  thìAC = x + y

Xét tam giácABC có MF // BC (gt)FM/BC=AM/AC ( hệ quả định lí Talet)

Thì FM/BC=x/x+y

Xét tam giácAHC có GM //HCthì HG/AH=CM/AC ( định lí Talet) HG/AH=x/x+y

Do đó  Sbefm/Sabc=2*xy/(x+y)^2

Ta có : (x-y)^2>=0thif(x+y)^2>=4xy thì xy/(x+y)^2<=1/4

Sbemf/Sabc<=2*1/4hay Sbemf<=1/2Sabc

Mà Sabc không đổi nên Sbemf đạt giá trị lớn nhất là 1/2Sabc khi và chỉ khi x=y

 Hay M là trung điểm của AC.

Gõ mỏi tay ko biết đc j ko-_-

24 tháng 12 2019

Huhu ai giúp mình với T_T

24 tháng 12 2019

M A B C D E O I K 1 2

a) Xét tứ giác ADME có:

\(MD//AE\left(MD//AC\right)\)

\(ME//AD\left(ME//AB\right)\)

\(\Rightarrow ADME\)là hình bình hành ( dấu hiệu 1 )

b) Vì ADME là hình bình hành ( câu a ) 

\(\Rightarrow DE\)cắt \(AM\)tại trung điểm 

Mà O là trung điểm DE

\(\Rightarrow\)O là trung điểm AM

\(\Rightarrow\)A,O,M thẳng hàng (đpcm)

c) Xét \(\Delta AIM\)vuông tại I có IO là đường trung tuyến

\(\Rightarrow OI=OA=OM=\frac{1}{2}AM\)

\(\Rightarrow\Delta AOI\)cân tại O

\(\Rightarrow\widehat{A_1}\)\(=\widehat{I_1}\)

Xét \(\Delta AOI\)có: \(\widehat{O_1}=\widehat{A_1}+\widehat{I_1}\)( định lý góc ngoài tam giác )

                           \(\Rightarrow\widehat{O_1}=2.\widehat{A_1}\)

CMTT: \(\widehat{O_2}=2.\widehat{A_2}\)

Ta có: \(\widehat{IOK}=\widehat{O_1}+\widehat{O_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)=2\widehat{BAC}=2.60^o=120^o\)

Vậy \(\widehat{IOK}=120^o\)

#Bảo___

11 tháng 10 2018

A B C M D E F I K L G N

Gọi G là đỉnh thứ tư của hình bình hành KMIG. Giao điểm của MG và IK là N.

Do tứ giác KMIG là hình bình hành nên MI = KG và ^MKG + ^KMI = 1800 hay ^MKG + ^EMD = 1800

Ta có: \(\frac{MI}{BC}=\frac{MK}{AC}\). Do MI = KG nên \(\frac{KG}{BC}=\frac{MK}{AC}\)

Xét tứ giác CDME có: ^CDM = ^CEM = 900 => ^ECD + ^EMD = 1800. Mà ^MKG + ^EMD = 1800 (cmt)

Nên ^ECD = ^MKG hay ^ACB = ^MKG 

Xét \(\Delta\)ABC và \(\Delta\)MGK có: \(\frac{GK}{BC}=\frac{MK}{AC}\); ^ACB = ^MKG => \(\Delta\)ABC ~ \(\Delta\)MGK (c.g.c)

=> ^BAC = ^GMK và \(\frac{MG}{AB}=\frac{MK}{AC}\)

Lại có: \(\frac{MK}{AC}=\frac{ML}{AB};\frac{MG}{AB}=\frac{MK}{AC}\)(cmt) => \(\frac{ML}{AB}=\frac{MG}{AB}\)=> ML = MG

Ta thấy: Tứ giác AFME có ^AFM = ^AEM = 900 => ^FAE + ^FME = 1800 . Mà ^FAE = ^BAC = ^GMK (cmt)

Nên ^GMK + ^FME = 1800 => G;M;F thẳng hàng. Hay G;M;I thẳng hàng

Mặt khác: N là trung điểm KI và MG (T/c hbh) => Điểm M nằm trên trung tuyến LN của \(\Delta\)IKL (1)

MG = ML; MN = 1/2.MG (cmt) => MN=1/2.ML (2)

Từ (1) và (2) => M là trọng tâm của \(\Delta\)IKL (đpcm).

16 tháng 11 2019
Bài làm

A B C x y O O 2 H

1/ Xét \(\diamond ACDO\), có :

\(\widehat{BAC}=\widehat{ACD}=\widehat{CDO}=90^0\)

\(\Rightarrow\diamond ACDO\) là hình chữ nhật

mà \(AC=CD\)

\(\Rightarrow\diamond ACDO\) là hình vuông.

2/ Ta có :

\(\bigtriangleup ABC\) vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^0\)

\(\bigtriangleup ABH\) vuông tại H \(\Rightarrow\widehat{BAH}+\widehat{ABC}=90^0\)

Do đó \(\widehat{BAH}=\widehat{ACB}\)

Xét \(\bigtriangleup ABC\) và \(\bigtriangleup AOO_2\), có :

\(\widehat{BAC}=\widehat{O_2OA}=90^0\) (\(\diamond ACDO\) là hình vuông)

\(AC=AO\) (\(\diamond ACDO\) là hình vuông)

\(\widehat{OAO_2}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\))

\(\Rightarrow\bigtriangleup ABC=\bigtriangleup AOO_2\text{ }\left(g.c.g\right)\).

22 tháng 3 2020

\(\text{GIẢI :}\)

A B C H D O I x y

a) Xét \(\diamond\text{ACDO}\)\(\widehat{\text{OAC}}=\widehat{\text{ACD}}=\widehat{\text{CDO}}\text{ }\left(=90^0\right)\)

\(\Rightarrow\text{ }\diamond\text{ACDO}\) là hình chữ nhật.

\(AC=CD\text{ }\Rightarrow\text{ }\diamond\text{ACDO}\) là hình vuông.

b) Xét ABC , có : \(\widehat{ACB}=90^0-\widehat{ABC}\) (1)

Xét ABH , có : \(\widehat{BAH}=90^{\text{o}}-\widehat{ABH}\)

hay \(\widehat{BAH}=90^{\text{o}}-\widehat{ABC}\) (2)

Từ (1) và (2) \(\Rightarrow\text{ }\widehat{BAH}=\widehat{ACB}\).

Xét \(\bigtriangleup\text{ABC và }\bigtriangleup\text{OIA}\), có :

\(\widehat{IOA}=\widehat{BAC}\text{ }\left(90^{\text{o}}\right)\)

\(AO=AC\) (vì \(\diamond\text{ACDO}\) là hình vuông)

\(\widehat{IAO}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\), \(\widehat{IAO}\)\(\widehat{BAH}\) đối đỉnh)

\(\Rightarrow\bigtriangleup\text{ABC}=\bigtriangleup\text{OIA}\) (g.c.g)

\(\Rightarrow\text{ IA = BC}\) (2 cạnh tương ứng) (đpcm).