cho a,b,c dương t/m : a+b+c=6abc
Tìm min của bt : \(\frac{a}{b^3}\)+\(\frac{b}{c^3}\)+\(\frac{c}{a^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TRẦN MINH HOÀNG
bạn giải thích zup tôi phần \(\frac{abc}{ab+bc+ac}ra\left(a+b+c\right)\)với
Bài 1:
\(A=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
Đẳng thức xảy ra khi a =b=c=1/3
Bài 2:Buồn ngủ rồi, chắc để đó cho anh Lâm.
Câu 2 có cho a; b dương ko? Nếu cho dương thì đỡ phải xét thêm 1 trường hợp, còn ko cho gì thì xét 2 trường hợp hơi dài
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{a^2}{ab+ac}+\frac{b^2}{ba+bc}+\frac{c^2}{ca+cb}\geq \frac{(a+b+c)^2}{ab+ac+bc+ba+ca+cb}=\frac{(a+b+c)^2}{2(ab+bc+ac)}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
$(a+b+c)^2\geq 3(ab+bc+ac)$
Do đó:
$P\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}$
Vậy $P_{\min}=\frac{3}{2}$ khi $a=b=c$
5.
ĐKXĐ: \(0\le x\le1\)
\(P=\sqrt{1-x}+\sqrt{x}+\sqrt{1+x}+\sqrt{x}\)
\(P\ge\sqrt{1-x+x}+\sqrt{1+x+x}=1+\sqrt{1+2x}\ge2\)
\(\Rightarrow P_{min}=2\) khi \(x=0\)
6.
\(3=a^2+b^2+ab\ge2ab+ab=3ab\Rightarrow ab\le1\)
\(3=a^2+b^2+ab\ge-2ab+ab=-ab\Rightarrow ab\ge-3\)
\(\Rightarrow-3\le ab\le1\)
\(a^2+b^2+ab=3\Rightarrow a^2+b^2=3-ab\)
Ta có:
\(P=\left(a^2+b^2\right)^2-2a^2b^2-ab\)
\(P=\left(3-ab\right)^2-2a^2b^2-ab=-a^2b^2-7ab+9\)
Đặt \(ab=x\Rightarrow-3\le x\le1\)
\(P=-x^2-7x+9=21-\left(x+3\right)\left(x+4\right)\le21\)
\(\Rightarrow P_{max}=21\) khi \(x=-3\) hay \(\left(a;b\right)=\left(-\sqrt{3};\sqrt{3}\right)\) và hoán vị
\(P=-x^2-7x+9=1+\left(1-x\right)\left(x+8\right)\ge1\)
\(\Rightarrow P_{min}=1\) khi \(x=1\) hay \(a=b=1\)
1. \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)
\(\Leftrightarrow x+y+z+\frac{1}{3}\left(x+y+z\right)^2\ge6\)
\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)
\(\Leftrightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)
\(\Leftrightarrow x+y+z\ge3\)
Vậy \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\ge\frac{1}{3}.3^2=3\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
2. Áp dụng BĐT Bunhiacopxki:
\(Q^2\le3\left(2a+bc+2b+ac+2c+ab\right)\)
\(Q^2\le6\left(a+b+c\right)+3\left(ab+bc+ca\right)\)
\(Q^2\le6\left(a+b+c\right)+\left(a+b+c\right)^2=16\)
\(\Rightarrow Q\le4\Rightarrow Q_{max}=4\) khi \(a=b=c=\frac{2}{3}\)
Các biến không có biên, mà cực trị xảy ra tại tâm là max nên biểu thức này ko có min, bạn ko cần nghĩ cách tìm nó đâu
Ta có P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
Mà \(ab+bc+ca\le a^2+b^2+c^2\Rightarrow P\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)
Vậy P min = 1 <=> a=b=c=1/căn(3)
^^
ta có a^2+b^2+c^2=1
Mà a,b,c thuộc N
\(\Rightarrow\)TH1:a và b =0
TH2:b và c=0
TH3:c và a=0
nhưng \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)có b,c,a là mẫu
Do đó không có P