\(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 6 2020

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(P=\frac{a^2}{ab+ac}+\frac{b^2}{ba+bc}+\frac{c^2}{ca+cb}\geq \frac{(a+b+c)^2}{ab+ac+bc+ba+ca+cb}=\frac{(a+b+c)^2}{2(ab+bc+ac)}\)

Theo hệ quả quen thuộc của BĐT AM-GM:

$(a+b+c)^2\geq 3(ab+bc+ac)$

Do đó:

$P\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}$

Vậy $P_{\min}=\frac{3}{2}$ khi $a=b=c$

21 tháng 6 2020

áp dụng bất đẳng thứcxvaco \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

suy ra P >= (a+b+c)^2/ 2 (a+b+c)=1/2

Dấu bằng xảy ra <=> \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

AH
Akai Haruma
Giáo viên
1 tháng 1 2017

Lời giải:

Áp dụng bất đẳng thức AM_GM kết hợp với $abc=1$:

\(\frac{a}{b}+\frac{a}{c}+1\geq 3\sqrt[3]{\frac{a^2}{bc}}=3a\). Tương tự với các phân thức khác

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3\geq 3(a+b+c)\)

Tiếp tục áp dụng AM_GM:

\(\frac{b}{a}+b^2c^2a+c\geq 3\sqrt[3]{b^3c^3}=3bc......\), công theo vế và rút gọn

\(\Rightarrow \frac{b}{a}+\frac{c}{b}+\frac{a}{c}+a+b+c\geq 2(ab+bc+ac)=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Cộng hai BĐT thu được lại, ta có:

\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq 2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

NV
16 tháng 11 2019

\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)

Dấu "=" xảy ra khi \(a=b=c=2\)

\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

4 tháng 8 2020

hình như sai sai !! nên ....

NV
4 tháng 8 2020

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow\left\{{}\begin{matrix}a^3\ge b^3\ge c^3\\\frac{1}{b+c}\ge\frac{1}{c+a}\ge\frac{1}{a+b}\end{matrix}\right.\)

\(\Rightarrow\frac{a^3}{b+c}\ge\frac{b^3}{c+a}\ge\frac{c^3}{a+b}\)

Do đó áp dụng BĐT Chybeshev:

\(\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)\left[\left(a+b\right)+\left(c+a\right)+\left(b+c\right)\right]\ge3\left[\frac{a^3}{b+c}.\left(b+c\right)+\frac{b^3}{c+a}\left(c+a\right)+\frac{c^3}{a+b}\left(a+b\right)\right]\)

\(\Leftrightarrow\left(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\right)\left[\left(a+b\right)+\left(c+a\right)+\left(b+c\right)\right]\ge3\left(a^3+b^3+c^3\right)\)

\(\Leftrightarrow\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\ge\frac{3}{2}.\frac{a^3+b^3+c^3}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

13 tháng 8 2020

+)\(\frac{3}{4}\ge a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow\frac{1}{8}\ge abc\)

+) \(P=8abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(32abc+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)-24abc\)

\(\ge4\sqrt[4]{\frac{32}{abc}}-24abc\ge4\sqrt[4]{\frac{32}{\frac{1}{8}}}-3=16-3=13\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{2}\)