K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

Nguyễn Việt Lâm

NV
22 tháng 2 2020

Các biến không có biên, mà cực trị xảy ra tại tâm là max nên biểu thức này ko có min, bạn ko cần nghĩ cách tìm nó đâu

31 tháng 10 2018

Áp dụng BĐT  AM-GM ta có :

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)

\(=\frac{9}{abc\left(a+b+c\right)}\ge\frac{27}{\left(ab+bc+ca\right)^2}\)

Mặt khác theo BĐT  AM-GM  có :

\(\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\le\left(\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)^3}{3}\right)=27\)

\(\Rightarrow\frac{27}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)

Đặt  \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)

Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{81}{9}.3=\frac{10}{3}\)

Vậy \(MinP=\frac{10}{3}\Leftrightarrow a=b=c=-1\)

31 tháng 10 2018

Sửa lại chút  , vội quá nên đánh lỗi .

Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{8t}{9}\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}.3=\frac{10}{3}\)

\(\Rightarrow MinP=\frac{10}{3}\Leftrightarrow a=b=c=1\)

1 tháng 3 2018

Ta có P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

Mà \(ab+bc+ca\le a^2+b^2+c^2\Rightarrow P\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)

Vậy P min = 1 <=> a=b=c=1/căn(3)

^^

1 tháng 3 2018

ta có a^2+b^2+c^2=1

Mà a,b,c thuộc N

\(\Rightarrow\)TH1:a và b =0

TH2:b và c=0

TH3:c và a=0

nhưng \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)có b,c,a là mẫu

Do đó không có P

23 tháng 1 2021

\(\text{⋄}\)Dễ có: \(B\ge\left(3+\frac{4}{a+b}\right)\left(3+\frac{4}{b+c}\right)\left(3+\frac{4}{c+a}\right)\)

\(\text{⋄}\)Đặt \(b+c=x;c+a=y;a+b=z\left(x,y,z>0\right)\)thì \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)

Giả thiết được viết lại thành: \(x+y+z\le3\)và ta cần tìm giá trị nhỏ nhất của \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)\)

\(\text{⋄}\)Ta có: \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)=27+36\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+48\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{64}{xyz}\)\(\ge27+36.\frac{9}{x+y+z}+48.\frac{27}{\left(x+y+z\right)^2}+64.\frac{27}{\left(x+y+z\right)^3}\ge343\)

Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1/2

NV
21 tháng 10 2019

\(B=\frac{a+b}{ab}+\frac{2}{a+b}=\frac{a+b}{2ab}+\frac{a+b}{2ab}+\frac{2}{a+b}\)

\(B\ge\frac{2\sqrt{ab}}{2ab}+2\sqrt{\frac{2\left(a+b\right)}{2ab\left(a+b\right)}}=3\)

\(B_{min}=3\) khi \(a=b=1\)

Câu b thì đề chắc phải cho a;b;c là 3 cạnh của 1 tam giác để đảm bảo các mẫu thức dương chứ?

Đặt \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)

\(T=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}\)

\(T=\frac{2y}{x}+\frac{2z}{x}+\frac{9x}{2y}+\frac{9z}{2y}+\frac{8x}{z}+\frac{8y}{z}\)

\(T=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{8y}{z}+\frac{9z}{2y}\)

\(T\ge2\sqrt{\frac{18xy}{2xy}}+2\sqrt{\frac{16xz}{xz}}+2\sqrt{\frac{72yz}{2yz}}=26\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)

21 tháng 10 2019

Nguyễn Việt Lâm mà

NV
24 tháng 9 2019

Ta có đánh giá: \(\frac{1}{2a-a^2}\ge\frac{81-108a}{25}\) \(\forall a\in\left(0;1\right)\)

Thật vậy, BĐT tương đương:

\(\left(81-108a\right)\left(2a-a^2\right)\le25\)

\(\Leftrightarrow108a^3-297a^2+162a-25\le0\)

\(\Leftrightarrow\left(3a-1\right)^2\left(25-12a\right)\ge0\) (luôn đúng \(\forall a\in\left(0;1\right)\))

Tương tự: \(\frac{1}{2b-b^2}\ge\frac{81-108b}{25}\) ; \(\frac{1}{2c-c^2}\ge\frac{81-108c}{25}\)

Cộng vế với vế:

\(\Rightarrow A\ge\frac{243-108\left(a+b+c\right)}{25}+3=\frac{42}{5}\)

\(A_{min}=\frac{42}{5}\) khi \(a=b=c=\frac{1}{3}\)

22 tháng 7 2019

\(S=\left(a^2+\frac{1}{4}\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+\frac{1}{4}\right)+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\ge a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{3}{4}=\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)-\frac{3}{4}\)

\(\ge1+1+1-\frac{3}{4}=\frac{9}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{2}\)

22 tháng 7 2019

à quên tách ra mà quên đoạn sau :v thêm vào tí nhé 

\(S\ge\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)

\(\ge2\sqrt{\frac{a}{4a}}+2\sqrt{\frac{b}{4b}}+2\sqrt{\frac{c}{4c}}+\frac{3}{4}.\frac{9}{a+b+c}-\frac{3}{4}\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}-\frac{3}{4}=\frac{27}{4}\)

13 tháng 8 2017

\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)

13 tháng 8 2017

ôi trá hình :VVV