K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2019

ĐKXĐ: \(x\ge0\)

\(x-\sqrt{x}-1\)

\(=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\forall x\ge0\)

Dấu"=" xảy ra<=> \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{4}\)

Vậy.......

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Bài 1:

$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$

$\Leftrightarrow x=4$

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Bài 2: $x-\sqrt{x}$

ĐKXĐ: $x\geq 0$

$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$

$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$

$\Leftrightarrow x=\frac{1}{4}$

 

`1. P = x/(sqrt x-1)`

`= (x-1+1)/(sqrtx-1)`

`= ((sqrt x+1)(sqrt x-1))/(sqrt x-1) +1/(sqrt x-1)`

`= sqrt x+1 + 1/(sqrt x-1)`

`= sqrtx-1 + 1/(sqrt x-1) + 2 >= 4`.

ĐTXR `<=> (sqrtx-1)^2 = 1`.

`<=> x =4` hoặc `x = 0 ( ktm)`.

Vậy Min A `= 4 <=> x= 4`.

25 tháng 7 2023

1) \(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{(x-\sqrt{x})+(\sqrt{x}-1)+1}{\sqrt{x}-1}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}+1\)

\(=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)

Với x>1\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-1>0\\\dfrac{1}{\sqrt{x}-1}>0\end{matrix}\right.\)

Áp dụng BĐT AM-GM cho 2 số dương \(\sqrt{x}-1\) và \(\dfrac{1}{\sqrt{x}-1}\), ta có:

\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{(\sqrt{x}-1).\dfrac{1}{\sqrt{x}-1}}=2\)

\(\Rightarrow P\ge2+2=4\)

Dấu = xảy ra khi: \(\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)

KL;....

1:

a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)

căn x+1>=1

=>2/căn x+1<=2

=>-2/căn x+1>=-2

=>A>=-2+1=-1

Dấu = xảy ra khi x=0

b: loading...

11 tháng 6 2021

\(A=\)\(\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\) (đk: \(x\ge-1\))

\(=\sqrt{\left(x+1\right)+2\sqrt{x+1}+1}+\sqrt{\left(x+1\right)-2\sqrt{x+1}+1}\)

\(=\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(=\sqrt{x+1}+1+\left|\sqrt{x+1}-1\right|\)

\(=\left[{}\begin{matrix}\sqrt{x+1}+1+\sqrt{x+1}-1;\sqrt{x+1}\ge1\\\sqrt{x+1}+1-\left(\sqrt{x+1}-1\right);\sqrt{x+1}< 1\end{matrix}\right.\)

\(=\left[{}\begin{matrix}2\sqrt{x+1};x\ge0\\2;-1\le x< 0\end{matrix}\right.\)

Có \(2\sqrt{x+1}\ge2\) tại \(x\ge0\) 

\(\Rightarrow\min\limits_{x\ge0}A=2\)

Dấu = xảy ra <=> x=0 mà tại \(-1\le x< 0\) thì A=2

Vậy giá trị nhỏ nhất của biểu thức là 2 tại x=0 hoặc \(-1\le x< 0\)

(Ủa đề zì kì)

\(ĐKXĐ:x\ge-1\)

Đặt \(A=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)

\(=\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}\)

\(=\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-1\right)^2}\)

\(=\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-1\right|\)

\(=\left|\sqrt{x+1}+1\right|+\left|1-\sqrt{x+1}\right|\)

\(\ge\left|\sqrt{x+1}+1+1-\sqrt{x+1}\right|=2\)

Dấu "=" xảy ra khi \(\left(\sqrt{x+1}+1\right)\left(1-\sqrt{x+1}\right)\ge0\)

\(\Leftrightarrow1-\sqrt{x+1}\ge0\)

\(\Leftrightarrow\sqrt{x+1}\le1\)

\(\Leftrightarrow x\le0\). Mà \(x\ge-1\) Nên \(-1\le x\le0\)

Vậy Min \(A=2\) khi \(-1\le x\le0\)

NV
21 tháng 4 2021

ĐKXĐ: \(0\le x\le1\)

\(P=\sqrt{1-x}+\sqrt{x}+\sqrt{1+x}+\sqrt{x}\)

\(P\ge\sqrt{1-x+x}+\sqrt{1+x}+\sqrt{x}\)

\(P\ge1+\sqrt{1+x}+\sqrt{x}\ge1+1+0=2\)

\(P_{min}=2\) khi \(x=0\)

28 tháng 7 2023

\(A=\dfrac{\sqrt[]{x}-2}{\sqrt[]{x}+1}\left(x\ge0\right)\)

\(\Rightarrow A=\dfrac{\sqrt[]{x}+1-3}{\sqrt[]{x}+1}\)

\(\Rightarrow A=1+\dfrac{-3}{\sqrt[]{x}+1}\left(1\right)\)

Ta lại có \(\sqrt[]{x}\ge0\Rightarrow\sqrt[]{x}+1\ge1\Rightarrow\dfrac{1}{\sqrt[]{x}+1}\le1\) 

\(\Rightarrow\dfrac{-3}{\sqrt[]{x}+1}\ge1.\left(-3\right)=-3\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow A=1+\dfrac{-3}{\sqrt[]{x}+1}\ge-3+1=-2\)

\(\Rightarrow GTNN\left(A\right)=-2\)

2 tháng 8 2023

Ta có : \(\sqrt{x+1}\) có nghĩa khi `x >= -1`  Từ đk ta có :

\(x+2\left(1+\sqrt{x+1}\right)=x+1+2\sqrt{x+1}+1=\left(\sqrt{x+1}+1\right)^2\)

\(\Leftrightarrow\sqrt{x+2\left(1+\sqrt{x+1}\right)}=\sqrt{x+1}+1\)

\(x+2\left(1-\sqrt{x+1}\right)=x+1-2\sqrt{x+1}+1=\left(\sqrt{x+1}-1\right)^2\\ \Leftrightarrow\sqrt{x+2\left(1-\sqrt{x+1}\right)}=\left|\sqrt{x+1}-1\right|\)

Ta có : \(y=\sqrt{x+1}+1+\left|\sqrt{x+1}-1\right|\)  `(1)`

Ta bỏ dấu \(\left|\right|\) ở `1`

Ta có TH :

`-1<= x <= 0` ; lúc này \(\sqrt{x+1}-1\le0\)

nên : \(\left|\sqrt{x+1}-4\right|=1-\sqrt{x+1}\)

`1` trở thành : `y=2`

`x>0` lúc này \(\sqrt{x+1}-1>0\) nên

\(\left|\sqrt{x+1}-1\right|=\sqrt{x+1}-1\)

`1` trở thành : \(y=2\sqrt{x+1}>2\left(x>0\right)\)

Vì : \(y=\left\{{}\begin{matrix}2khi-1\le x\le0\\2\sqrt{x+1}kh\text{i}>0\end{matrix}\right.\)

gtnn của `y=2` với mọi \(x\in\left[-1;0\right]\)

9 tháng 12 2021

\(A^2=\left(\sqrt{1-x}+\sqrt{1+x}\right)^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)=4\\ \Leftrightarrow A\le2\\ A_{max}=2\Leftrightarrow1-x=1+x\Leftrightarrow x=0\\ A^2=2+2\sqrt{1-x^2}\ge2\\ \Leftrightarrow A\ge\sqrt{2}\\ A_{min}=\sqrt{2}\Leftrightarrow1-x^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(\sqrt{2}\le A\le2\)

18 tháng 12 2022

A = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)  ; Đk \(x\) \(\ge\) 0

A = 2  - \(\dfrac{3}{\sqrt{x}+1}\) 

\(\sqrt{x}\) \(\ge\) 0 => \(\sqrt{x}\) + 1 \(\ge\) 1

\(\dfrac{3}{\sqrt{x}+1}\) \(\le\) \(\dfrac{3}{1}\)

\(\dfrac{3}{\sqrt{x}+1}\) \(\le\) 3

\(\dfrac{3}{\sqrt{x}+1}\) \(\ge\) -3

2 - \(\dfrac{3}{\sqrt{x}+1}\) \(\ge\) 2 - 3

2 - \(\dfrac{3}{\sqrt{x}+1}\) \(\ge\) -1

A(min ) = -1  dấu bằng xảy ra khi  \(\sqrt{x}\) = 0 hay \(x\) = 0