Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$
$\Leftrightarrow x=4$
Bài 2: $x-\sqrt{x}$
ĐKXĐ: $x\geq 0$
$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$
$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$
$\Leftrightarrow x=\frac{1}{4}$
`1. P = x/(sqrt x-1)`
`= (x-1+1)/(sqrtx-1)`
`= ((sqrt x+1)(sqrt x-1))/(sqrt x-1) +1/(sqrt x-1)`
`= sqrt x+1 + 1/(sqrt x-1)`
`= sqrtx-1 + 1/(sqrt x-1) + 2 >= 4`.
ĐTXR `<=> (sqrtx-1)^2 = 1`.
`<=> x =4` hoặc `x = 0 ( ktm)`.
Vậy Min A `= 4 <=> x= 4`.
1) \(P=\dfrac{x}{\sqrt{x}-1}=\dfrac{(x-\sqrt{x})+(\sqrt{x}-1)+1}{\sqrt{x}-1}=\sqrt{x}+\dfrac{1}{\sqrt{x}-1}+1\)
\(=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)
Với x>1\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-1>0\\\dfrac{1}{\sqrt{x}-1}>0\end{matrix}\right.\)
Áp dụng BĐT AM-GM cho 2 số dương \(\sqrt{x}-1\) và \(\dfrac{1}{\sqrt{x}-1}\), ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\sqrt{(\sqrt{x}-1).\dfrac{1}{\sqrt{x}-1}}=2\)
\(\Rightarrow P\ge2+2=4\)
Dấu = xảy ra khi: \(\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
KL;....
1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b:
\(A=\)\(\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\) (đk: \(x\ge-1\))
\(=\sqrt{\left(x+1\right)+2\sqrt{x+1}+1}+\sqrt{\left(x+1\right)-2\sqrt{x+1}+1}\)
\(=\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(=\sqrt{x+1}+1+\left|\sqrt{x+1}-1\right|\)
\(=\left[{}\begin{matrix}\sqrt{x+1}+1+\sqrt{x+1}-1;\sqrt{x+1}\ge1\\\sqrt{x+1}+1-\left(\sqrt{x+1}-1\right);\sqrt{x+1}< 1\end{matrix}\right.\)
\(=\left[{}\begin{matrix}2\sqrt{x+1};x\ge0\\2;-1\le x< 0\end{matrix}\right.\)
Có \(2\sqrt{x+1}\ge2\) tại \(x\ge0\)
\(\Rightarrow\min\limits_{x\ge0}A=2\)
Dấu = xảy ra <=> x=0 mà tại \(-1\le x< 0\) thì A=2
Vậy giá trị nhỏ nhất của biểu thức là 2 tại x=0 hoặc \(-1\le x< 0\)
(Ủa đề zì kì)
\(ĐKXĐ:x\ge-1\)
Đặt \(A=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)
\(=\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}\)
\(=\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(\sqrt{x+1}-1\right)^2}\)
\(=\left|\sqrt{x+1}+1\right|+\left|\sqrt{x+1}-1\right|\)
\(=\left|\sqrt{x+1}+1\right|+\left|1-\sqrt{x+1}\right|\)
\(\ge\left|\sqrt{x+1}+1+1-\sqrt{x+1}\right|=2\)
Dấu "=" xảy ra khi \(\left(\sqrt{x+1}+1\right)\left(1-\sqrt{x+1}\right)\ge0\)
\(\Leftrightarrow1-\sqrt{x+1}\ge0\)
\(\Leftrightarrow\sqrt{x+1}\le1\)
\(\Leftrightarrow x\le0\). Mà \(x\ge-1\) Nên \(-1\le x\le0\)
Vậy Min \(A=2\) khi \(-1\le x\le0\)
ĐKXĐ: \(0\le x\le1\)
\(P=\sqrt{1-x}+\sqrt{x}+\sqrt{1+x}+\sqrt{x}\)
\(P\ge\sqrt{1-x+x}+\sqrt{1+x}+\sqrt{x}\)
\(P\ge1+\sqrt{1+x}+\sqrt{x}\ge1+1+0=2\)
\(P_{min}=2\) khi \(x=0\)
\(A=\dfrac{\sqrt[]{x}-2}{\sqrt[]{x}+1}\left(x\ge0\right)\)
\(\Rightarrow A=\dfrac{\sqrt[]{x}+1-3}{\sqrt[]{x}+1}\)
\(\Rightarrow A=1+\dfrac{-3}{\sqrt[]{x}+1}\left(1\right)\)
Ta lại có \(\sqrt[]{x}\ge0\Rightarrow\sqrt[]{x}+1\ge1\Rightarrow\dfrac{1}{\sqrt[]{x}+1}\le1\)
\(\Rightarrow\dfrac{-3}{\sqrt[]{x}+1}\ge1.\left(-3\right)=-3\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A=1+\dfrac{-3}{\sqrt[]{x}+1}\ge-3+1=-2\)
\(\Rightarrow GTNN\left(A\right)=-2\)
Ta có : \(\sqrt{x+1}\) có nghĩa khi `x >= -1` Từ đk ta có :
\(x+2\left(1+\sqrt{x+1}\right)=x+1+2\sqrt{x+1}+1=\left(\sqrt{x+1}+1\right)^2\)
\(\Leftrightarrow\sqrt{x+2\left(1+\sqrt{x+1}\right)}=\sqrt{x+1}+1\)
\(x+2\left(1-\sqrt{x+1}\right)=x+1-2\sqrt{x+1}+1=\left(\sqrt{x+1}-1\right)^2\\ \Leftrightarrow\sqrt{x+2\left(1-\sqrt{x+1}\right)}=\left|\sqrt{x+1}-1\right|\)
Ta có : \(y=\sqrt{x+1}+1+\left|\sqrt{x+1}-1\right|\) `(1)`
Ta bỏ dấu \(\left|\right|\) ở `1`
Ta có TH :
`-1<= x <= 0` ; lúc này \(\sqrt{x+1}-1\le0\)
nên : \(\left|\sqrt{x+1}-4\right|=1-\sqrt{x+1}\)
`1` trở thành : `y=2`
`x>0` lúc này \(\sqrt{x+1}-1>0\) nên
\(\left|\sqrt{x+1}-1\right|=\sqrt{x+1}-1\)
`1` trở thành : \(y=2\sqrt{x+1}>2\left(x>0\right)\)
Vì : \(y=\left\{{}\begin{matrix}2khi-1\le x\le0\\2\sqrt{x+1}kh\text{i}>0\end{matrix}\right.\)
gtnn của `y=2` với mọi \(x\in\left[-1;0\right]\)
\(A^2=\left(\sqrt{1-x}+\sqrt{1+x}\right)^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)=4\\ \Leftrightarrow A\le2\\ A_{max}=2\Leftrightarrow1-x=1+x\Leftrightarrow x=0\\ A^2=2+2\sqrt{1-x^2}\ge2\\ \Leftrightarrow A\ge\sqrt{2}\\ A_{min}=\sqrt{2}\Leftrightarrow1-x^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(\sqrt{2}\le A\le2\)
A = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\) ; Đk \(x\) \(\ge\) 0
A = 2 - \(\dfrac{3}{\sqrt{x}+1}\)
\(\sqrt{x}\) \(\ge\) 0 => \(\sqrt{x}\) + 1 \(\ge\) 1
\(\dfrac{3}{\sqrt{x}+1}\) \(\le\) \(\dfrac{3}{1}\)
\(\dfrac{3}{\sqrt{x}+1}\) \(\le\) 3
- \(\dfrac{3}{\sqrt{x}+1}\) \(\ge\) -3
2 - \(\dfrac{3}{\sqrt{x}+1}\) \(\ge\) 2 - 3
2 - \(\dfrac{3}{\sqrt{x}+1}\) \(\ge\) -1
A(min ) = -1 dấu bằng xảy ra khi \(\sqrt{x}\) = 0 hay \(x\) = 0
ĐKXĐ: \(x\ge0\)
\(x-\sqrt{x}-1\)
\(=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{5}{4}\ge\frac{-5}{4}\forall x\ge0\)
Dấu"=" xảy ra<=> \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{4}\)
Vậy.......