Cho \(x-y=12\) . Tính A = \(x^3-y^2-36xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
2)
Đặt \(A=x^3-y^3-36xy\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)
\(=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]\)
\(=12.12^2+3.12xy-36xy\)
\(=12^3\)
#)Giải :
1)
Ta có \(x+y=-5\Rightarrow\left(x+y\right)^2=x^2+y^2+2xy=\left(-5\right)^2=25\)
\(\Rightarrow2xy=25-11=14\)
\(\Rightarrow xy=7\)
\(\Rightarrow2xy.xy=2x^2.y^2=14.7=98\)
\(\left(x^2+y^2\right)^2=11^2=121\)
\(\Rightarrow\left(x^4+y^4\right)+98=121\)
\(\Rightarrow x^4+y^4=23\)
Ta có:
\(E=x^3-y^3-36xy\)
\(E=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)
\(E=12\left(x^2+xy+y^2\right)-36xy\) ( vì x - y =12 )
\(E=12\left(x^2+y+y^2-3xy\right)\)
\(E=12\left(x^2-2xy+y^2\right)\)
\(E=12\left(x-y\right)^2\)
\(E=12\cdot12^2\) ( vì x - y =12 )
\(E=12^3=1728\)
Hok tốt!
Ta có: \(\left(-\dfrac{1}{27}\right)x^2\cdot y^2\cdot x^3y\cdot36xy\)
\(=\left(-\dfrac{1}{27}\cdot36\right)\cdot\left(x^2\cdot x^3\cdot x\right)\cdot\left(y^2\cdot y\cdot y\right)\)
\(=\dfrac{-4}{3}x^6y^4\)
Ta có A=\(\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-abc\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
=\(2\left(a+b+c\right)+\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}-\frac{ab}{c}-\frac{bc}{a}-\frac{ca}{b}=2\left(a+b+c\right)\)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2=a^2-ab+b^2+3ab\left(1-2ab\right)+6a^2b^2\)
=\(\left(a+b\right)^2-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2) Ta có \(A=\left(a-1\right)\left(b-1\right)\left(c-1\right)=abc-ab-bc-ca+a+b+c-1=0\)
\(P=\left(x^4+y^4-2x^2y^2+2x^2y^2\right)+\left(x+y\right)^3-3xy\left(x+y\right)-xy\left(x^2+y^2\right)+36xy\)
\(=\left(x^2+y^2\right)^2-2x^2y^2+27-9xy-xy\left(x^2+y^2\right)+36xy\)
\(=\left(x^2+y^2\right)\left(x^2+y^2-xy\right)-2x^2y^2+27+27xy\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^2-2xy-xy\right]-2x^2y^2+27+27xy\)
\(=\left[9-2xy\right]\left[9-3xy\right]-2x^2y^2+27+27xy\)
\(=81-27xy-18xy+6x^2y^2-2x^2y^2+27+27xy\)
\(=108-18xy+4x^2y^2\)
A=x3−y3−36xy=(x−y)(x2+xy+y2)−36xy=(x−y)[(x−y)2+3xy]−36xy
đề pải là y3 ms đúng chứ bạn???
\(x^3-y^3-36xy=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)
\(=12x^2+12xy+12y^2-36xy\)
\(=12x^2-24xy+12y^2\)
\(=12\left(x-y\right)^2\)
\(=1728\)