K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

Ta có:

\(E=x^3-y^3-36xy\)

\(E=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)

\(E=12\left(x^2+xy+y^2\right)-36xy\) ( vì x - y =12 )

\(E=12\left(x^2+y+y^2-3xy\right)\)

\(E=12\left(x^2-2xy+y^2\right)\)

\(E=12\left(x-y\right)^2\)

\(E=12\cdot12^2\) ( vì x - y =12 )

\(E=12^3=1728\)

Hok tốt!

21 tháng 6 2018

\(A=\cdot\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)

    \(=\left(3x-2y\right)^3\)

thay x=4;y=6 vào 

\(A=\left(3.4-2.6\right)^3=0\)

21 tháng 6 2018

\(A=27x^3-54x^2y+36xy^2-8y^3\)

\(A=\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)

\(A=\left(3x-2y\right)^3\)

Thay x=4, y=6 vào biểu thức trên, ta được:

\(A=\left(3.4-2.6\right)^3\)

\(A=\left(12-12\right)^3\)

\(A=0^3=0\)

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.

       

18 tháng 7 2019

\(A=4x^2-y^2-2y-1\)

  \(=\left(2x\right)^2-\left(y+1\right)^2\)

  \(=\left(2x+y+1\right)\left(2x-y-1\right)\)

  \(=-197\) 

Vậy....

18 tháng 7 2019

Cảm ơn~~

15 tháng 6 2019

#)Giải :

2) 

Đặt \(A=x^3-y^3-36xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)

\(=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]\)

\(=12.12^2+3.12xy-36xy\)

\(=12^3\)

15 tháng 6 2019

#)Giải :

1) 

Ta có  \(x+y=-5\Rightarrow\left(x+y\right)^2=x^2+y^2+2xy=\left(-5\right)^2=25\)

\(\Rightarrow2xy=25-11=14\)

\(\Rightarrow xy=7\)

\(\Rightarrow2xy.xy=2x^2.y^2=14.7=98\)

 \(\left(x^2+y^2\right)^2=11^2=121\)

\(\Rightarrow\left(x^4+y^4\right)+98=121\)

\(\Rightarrow x^4+y^4=23\)

a.Ta có:\(2x^2-4xy+4y^2+2x+1=0\)

\(\Rightarrow\left[x^2-2x\left(2y\right)+\left(2y\right)^2\right]+\left(x^2+2x+1\right)=0\)

\(\Rightarrow\left(x-2y\right)^2+\left(x+1\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-2y=0 và x+1=0

Suy ra x=-1;y=-1/2

b.Ta có:\(x^2-6x+y^2-6y+21=3\)

\(\Rightarrow\left(x^2-6x+9\right)+\left(y^2-6y+9\right)+3-3=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-3\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x-3=y-3=0

Suy ra x=y=3

c.Ta có:\(2x^2-8x+y^2-2xy+16=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-4\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi:x-y=x-4=0

Suy ra x=y=4

6 tháng 8 2020

a) 2x2 - 4xy + 4y2 + 2x + 1 = 0

<=> x2 - 4xy + 4y2 + x2 + 2x + 1 = 0

<=> ( x - 2y )2 + ( x + 1 )2 = 0

<=> \(\hept{\begin{cases}x-2y=0\\x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-\frac{1}{2}\end{cases}}\)

b) x2 - 6x + y2 - 6y + 21 = 3

<=> x2 - 6x + y2 - 6y + 21 - 3 = 0

<=> x2 - 6x + y2 - 6y + 18 = 0

<=> x2 - 6x + 9 + y2 - 6y + 9 = 0

<=> ( x - 3 )2 + ( y - 3 )2 = 0

<=> \(\hept{\begin{cases}x-3=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

c) 2x2 - 8x + y2 - 2xy + 16 = 0

<=> x2 - 2xy + y2 + x2 - 8x + 16 = 0

<=> ( x - y )2 + ( x - 4 )2 = 0

<=> \(\hept{\begin{cases}x-y=0\\x-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=4\end{cases}}\)

20 tháng 7 2018

TA có: \(A=x^3-y^3-36xy=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]-36xy\)

\(=12.12^2+3.12xy-36xy=12^3\)