K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

TA có: \(A=x^3-y^3-36xy=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]-36xy\)

\(=12.12^2+3.12xy-36xy=12^3\)

19 tháng 7 2019

Đề a,b bạn ghi mik ko hiểu

c)Ta có : \(x+y=a=>x^2+y^2+2xy=a^2\)

Mà  \(x^2+y^2=b\)nên\(b+2xy=a^2=>xy=\frac{a^2-b}{2}\)

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

Thay \(x+y=a\) ; \(x^2+y^2=b\)và \(xy=\frac{a^2-b}{2}\)ta có : \(x^3+y^3=a\left(b-\frac{a^2-b}{2}\right)=ab-\frac{a^3-ab}{2}\)

12 tháng 7 2024

12 tháng 7 2024

b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\)

    1 = \(x^3\) - y3 - 3\(xy\)

15 tháng 8 2018

a)  \(x+y=1\)

=>   \(\left(x+y\right)^3=1\)

<=>  \(x^3+y^3+3xy\left(x+y\right)=1\)

<=>  \(x^3+y^3+3xy=1\)

b)  \(x-y=1\)

=>  \(\left(x-y\right)^3=1\)

<=>  \(x^3-y^3-3xy\left(x-y\right)=1\)

<=>  \(x^3-y^3-3xy=1\)

15 tháng 10 2018

Ta có:

\(E=x^3-y^3-36xy\)

\(E=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)

\(E=12\left(x^2+xy+y^2\right)-36xy\) ( vì x - y =12 )

\(E=12\left(x^2+y+y^2-3xy\right)\)

\(E=12\left(x^2-2xy+y^2\right)\)

\(E=12\left(x-y\right)^2\)

\(E=12\cdot12^2\) ( vì x - y =12 )

\(E=12^3=1728\)

Hok tốt!

19 tháng 11 2021

Địch bố mi

12 tháng 7 2024

13 = (\(x+y\))3 = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 = \(x^3\)+y3+3\(xy\)(\(x+y\))

1 = \(x^3\)+y3+3\(xy\)

12 tháng 7 2024

13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\)y + 3\(xy\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))

1 = \(x^3\) - y3 - 3\(xy\)

15 tháng 6 2019

#)Giải :

2) 

Đặt \(A=x^3-y^3-36xy\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)-36xy\)

\(=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]\)

\(=12.12^2+3.12xy-36xy\)

\(=12^3\)

15 tháng 6 2019

#)Giải :

1) 

Ta có  \(x+y=-5\Rightarrow\left(x+y\right)^2=x^2+y^2+2xy=\left(-5\right)^2=25\)

\(\Rightarrow2xy=25-11=14\)

\(\Rightarrow xy=7\)

\(\Rightarrow2xy.xy=2x^2.y^2=14.7=98\)

 \(\left(x^2+y^2\right)^2=11^2=121\)

\(\Rightarrow\left(x^4+y^4\right)+98=121\)

\(\Rightarrow x^4+y^4=23\)