K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

\(A=4x^2-y^2-2y-1\)

  \(=\left(2x\right)^2-\left(y+1\right)^2\)

  \(=\left(2x+y+1\right)\left(2x-y-1\right)\)

  \(=-197\) 

Vậy....

18 tháng 7 2019

Cảm ơn~~

4 tháng 10 2016

   x^2 + 4y^2 - 2x + 10+ 4xy - 4y

= (x^2 + 4xy + 4y^2) - (2x + 4y) + 10

= (x + 2y)^2 - 2 (x + 2y) + 10

Thay x + 2y = 5 vào biểu thức trên ,ta  được :

   5^2 - 2 . 5 + 10

= 25 - 10 + 10

= 25

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$

$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.

$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$

$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)

15 tháng 1 2023

câu P= (x+1)3-(x-1)3-3[(x-1)2+(x+1)2

làm lại hộ mình với ạ 

14 tháng 6 2016

\(B=x^3-y^3-3xy\left(x-y\right)-\left(x^2-2xy+y^2\right)+\left(7x-7y\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2-3xy-x+y+7\right)=\left(x-y\right)\left[\left(x^2-2xy+y^2\right)-\left(x-y\right)+7\right]\)

\(=7\left(7^2-7+7\right)=7^3=343.\)

Học kĩ hằng đẳng thức là làm được em nhé :)

8 tháng 7 2021

\(K=\dfrac{-1}{2x^2-x-1}\)

\(=\dfrac{-1}{2x^2-2.\dfrac{1}{2\sqrt{2}}.\sqrt{2}x+\left(\dfrac{1}{2\sqrt{2}}\right)^2+\dfrac{9}{8}}\)

\(=\dfrac{-1}{\left(\sqrt{2}x+\dfrac{1}{2\sqrt{2}}\right)^2+\dfrac{9}{8}}\)

Biểu thức dưới mẫu luôn luôn dương 

=> Giá trị của K < 0

8 tháng 7 2021

Em xin lỗi nhưng nó là -1/2.x^2 -x -1 em viết thiếu dấu ạ

 

2 tháng 6 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Thay x = -1,76; y = 3/25

⇒ P = 1/2

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:

Vì $x=9$ nên $x-9=0$
Ta có:

$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$

$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$

$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$

$=x-10=9-10=-1$

a: Ta có: \(y\left(x^2-y^2\right)\cdot\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(\left(2x+\dfrac{1}{3}\right)\left(4x^2-\dfrac{2}{3}x+\dfrac{1}{9}\right)-\left(8x^3-\dfrac{1}{27}\right)\)

\(=8x^3+\dfrac{1}{27}-8x^3+\dfrac{1}{27}\)

\(=\dfrac{2}{27}\)

c: Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

17 tháng 9 2019

ghi đề hẳn hoi coi