K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

\(N=\frac{x^2+2000}{x}=x+\frac{2000}{x}\ge2\sqrt{x.\frac{2000}{x}}=2\sqrt{2000}=40\sqrt{5}\)

Dấu "=" tại \(x=20\sqrt{5}\)

3 tháng 1 2016

1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)

\(\)

3 tháng 1 2016

phải là \(\le12\)

28 tháng 2 2019

=> B = \(\frac{\left(x-1\right)^2+2010}{x^2}=\frac{\left(x-1\right)^2}{x^2}+\frac{2010}{x^2}\)

Vì \(\left(x-1\right)^2\ge0\)\(x^2\)\(\ge\)0 với mọi x 

=> để B bé nhất thì \(\frac{2010}{x^2}\)bé nhất

=> \(x^2\) lớn nhất

=> WTF bạn ghi sai đầu bài à ???

28 tháng 2 2019

Với cả đây là toán 6 mà 

25 tháng 6 2018

\(M=\frac{20}{x^2+y^2}+\frac{11}{xy}=\frac{20}{x^2+y^2}+\frac{22}{2xy}=\frac{20}{x^2+y^2}+\frac{20}{2xy}+\frac{2}{2xy}\)

\(=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}>=20\cdot\frac{4}{x^2+2xy+y^2}+\frac{4}{\left(x+y\right)^2}\)

\(=\frac{80}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}=\frac{84}{\left(x+y\right)^2}>=\frac{84}{2^2}=\frac{84}{4}=21\)

dấu = xảy ra khi \(\hept{\begin{cases}x+y=2\\x=y\end{cases}\Rightarrow x=y=1}\)

vậy min M là 21 khi x=y=1

21 tháng 6 2016

Ta có: \(B=\frac{x}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}+\frac{4}{\sqrt{x}}=\sqrt{x}-2+\frac{4}{\sqrt{x}}=\left(\sqrt[4]{x}\right)^2-2.\sqrt[4]{x}.\frac{2}{\sqrt[4]{x}}+\left(\frac{2}{\sqrt[4]{x}}\right)^2+2\)

\(=\left(\sqrt[4]{x}-\frac{2}{\sqrt[4]{x}}\right)^2+2\ge2\)

Vậy Min B = 2  khi x = 4.

Chúc em học tốt :)

1 tháng 8 2019

\(Q=\frac{x^2+2x+17}{2\left(x+1\right)}=\frac{\left(x+1\right)^2+16}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{8}{x+1}\ge2\sqrt{\frac{x+1}{2}.\frac{8}{x+1}}=4\)

Dấu "=" tại x = 3 

16 tháng 12 2017

\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)\(=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\frac{1}{2}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}.\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}.\)

16 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(P=\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{x}+\dfrac{4}{2y}=\dfrac{1^2}{x}+\dfrac{2^2}{2y}\)

\(\ge\dfrac{\left(1+2\right)^2}{x+2y}=\dfrac{3^2}{3}=3\)

Đẳng thức xảy ra khi \(x=y=1\)

8 tháng 8 2016

Áp dụng bđt Côsi:

\(B=\frac{3}{2}x^3+\frac{3}{2}x^3+\frac{1}{3x^2}+\frac{1}{3x^2}+\frac{1}{3x^2}\ge5\sqrt[5]{\left(\frac{3}{2}x^3\right)^2.\left(\frac{1}{3x^2}\right)^3}=\frac{5}{\sqrt[5]{12}}\)

Dấu bằng xảy ra khi \(\frac{3}{2}x^3=\frac{1}{3x^2}\Leftrightarrow x^5=\frac{2}{9}\)\(\Leftrightarrow x=\sqrt[5]{\frac{2}{9}}\)