Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Đầu tiên ta cm: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\forall a,b>0\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\) (cô si)
Dấu "=" khi a = b.
Áp dụng:
\(\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy\) \(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}\cdot4xy}+\frac{5}{\left(x+y\right)^2}\)
\(=4+2+5=11\)
Vậy MinA = 11 khi \(x=y=\frac{1}{2}\)
\(P=\frac{x^2+1}{x^2-x+1}\Leftrightarrow x^2+1=P\left(x^2-x+1\right)\)
\(\Leftrightarrow x^2+1-Px^2+Px-P=0\)(*)
\(\Leftrightarrow\left(1-P\right)x^2+Px+\left(1-P\right)=0\)
\(\Delta=P^2-4\left(1-P\right)^2\)
\(=P^2-4\left(1-2P+P^2\right)=-3P^2+8P-4\)
Để P có GTNN và GTLN thì phương trình (*) có nghiệm
\(\Leftrightarrow\Delta\ge0\Leftrightarrow-3P^2+8P-4\ge0\)
\(\Leftrightarrow-3P^2+2P+6P-4\ge0\)
\(\Leftrightarrow-P\left(3P-2\right)+2\left(3P-2\right)\ge0\)
\(\Leftrightarrow\left(3P-2\right)\left(2-P\right)\ge0\)
\(\Leftrightarrow\frac{2}{3}\le P\le2\)
Vậy \(min_P=\frac{2}{3}\Leftrightarrow x=-1\); \(max_P=2\Leftrightarrow x=1\)
A = \(\frac{6}{3x}+\frac{6}{2y}+\frac{12}{3x+2y}=6.\left(\frac{1}{3x}+\frac{1}{2y}\right)+\frac{12}{3x+2y}\)
Áp dụng BĐT: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\)với a;b không âm
=> A \(\ge6.\frac{4}{3x+2y}+\frac{12}{3x+2y}=\frac{36}{3x+2y}\)
Mặt khác, (3x + 2y)2 = (3x.1 + 2y.1)2 \(\le\) (12 + 12).(9x2 + 4y2) = 2.18 = 36
=> 0< 3x + 2y \(\le\) 6 => \(\frac{36}{3x+2y}\ge\frac{36}{6}=6\)
=> A \(\ge\) 6.
Vậy Min A = 6 khi 3x = 2y => 18x2 = 18 => x = 1 (do x > 0) => y = 3/2
\(A=x^2+4y^2+x^2+\frac{1}{x}+\frac{1}{x}+12y^2+\frac{3}{2y}+\frac{3}{2y}\)
\(A\ge\frac{\left(x+2y\right)^2}{2}+3\sqrt[3]{\frac{x^2}{x^2}}+3\sqrt[3]{\frac{12y^2.3.3}{2y.2y}}\ge14\)
\(\Rightarrow A_{min}=14\) khi \(\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)
\(xy+yz+zx\le x^2+y^2+z^2\le3\)
\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{3+xy+yz+zx}\ge\frac{9}{3+3}=\frac{3}{2}\)
Min P = 3/2 khi x=y=z=1
ta có:
\(F^2=\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\)
\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)=1+2.1=3\)
\(\Rightarrow F\ge\sqrt{3}\)
Vậy \(Min_F=\sqrt{3}\)khi \(x=y=z=\frac{\sqrt{3}}{3}\)
cho mình hỏi từ \(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge x^2+y^2+z^2\)tại sao lại ra được như thế này vậy ạ
Bài này dùng cô si điểm rơi
Mình đoán là x=1 y=1/2
Có A=(2x^2+2/x+2/x)+(16y^2+2/y+2/y)-2/x-1/y
áp dụng cô si 3 số vào 2 cái ngoặc đầu rồi tính ra(*)
còn -2/x-1/y=-(2/x+1/y)=-(2/x+2/2y)
áp dụng bđt svac vào 2/x+2/2y>=8/x+2y
mà x+2y>=2
nên -2/x-1/y>=-4(**)
tóm laị A>=14
dấu bằng xảy ra khi x=1 y=1/2
Chúc bạn học tốt!
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Áp dụng bđt Côsi:
\(B=\frac{3}{2}x^3+\frac{3}{2}x^3+\frac{1}{3x^2}+\frac{1}{3x^2}+\frac{1}{3x^2}\ge5\sqrt[5]{\left(\frac{3}{2}x^3\right)^2.\left(\frac{1}{3x^2}\right)^3}=\frac{5}{\sqrt[5]{12}}\)
Dấu bằng xảy ra khi \(\frac{3}{2}x^3=\frac{1}{3x^2}\Leftrightarrow x^5=\frac{2}{9}\)\(\Leftrightarrow x=\sqrt[5]{\frac{2}{9}}\)