\(C=\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{64a^2}+2a\left(a\ge0\right)\\ < =>\sqrt{8^2.a^2}+2a\\ < =>\sqrt{\left(8a\right)^2+2a}\\ < =>\left|8a\right|+2a\\ < =>8a+2a\\ < =>10a\left(TM\right)vìa\ge0\)
\(b,3\sqrt{9a^6}-6a^3\left(a\in R\right)\\ < =>3\sqrt{\left(3a^2\right)^2}-6a^3\\ < =>3\left|3a^3\right|-6a^3\\ \)
Nếu \(a\ge0\) thì giá trị của biểu thức là:
\(3.3a^2-6a^2\\ =9a^3-6a^3\\ =3a^3\)
Nếu a<0 thì giá trị của biểu thức là:
\(3\left(-3a^3\right)-6a^3=-9a^3\\ =-6a^3=-15a^3\)
\(c,\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\left(a\ge3\right)\\ =\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\\ =\left|a+3\right|+\left|a-3\right|\\ =a+3+a-3\\ =2a\)
\(\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\)
\(=\left|a+3\right|+\left|a-3\right|\)
Vì \(-3\le a\le3\)\(\Rightarrow\left|a+3\right|=a+3\)và \(\left|a-3\right|=-\left(a-3\right)=-a+3\)
\(\Rightarrow\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\left(a+3\right)+\left(-a+3\right)=6\)
d, \(D=\sqrt{3+2\sqrt{2}}=\sqrt{2+2.\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
e,\(E=\sqrt{8-2\sqrt{15}}=\sqrt{5-2.\sqrt{5}.\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}\)
a,ĐKXĐ: \(\forall x\in R\)
\(\Rightarrow A=\left|a+3\right|+\left|a-3\right|\)\(=\left|-a-3\right|+\left|a-3\right|\)
Vì \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) *Dấu ''='' xảy ra\(\Leftrightarrow A.B\ge0\) *
\(\Rightarrow A\ge\left|-a-3+a-3\right|=6\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(-a-3\right)\left(a-3\right)\ge0\Leftrightarrow\left(a+3\right)\left(a-3\right)\ge0\)
\(\Leftrightarrow-3\le a\le3\)
Vậy ...
\(A=\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\\ =\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\\ \\ =a+3+3-a\\ =6\)
\(B=\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\\ =\sqrt{\left(a-1\right)+2\sqrt{a-1}+1}+\sqrt{\left(a-1\right)-2\sqrt{a-1}+1}\\ =\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\\ =\sqrt{a-1}+1+1-\sqrt{a-1}\\ =2\)
\(A=\left|a-3\right|-3a=3-a-3a=3-4a\)
\(B=4a+3-\left|2a-1\right|=4a+3-2a+1=2a+4\)
\(C=\dfrac{4}{a^2-4}\left|a-2\right|=\dfrac{-4\left(a-2\right)}{\left(a-2\right)\left(a+2\right)}=\dfrac{-4}{a+2}\)
\(D=\dfrac{a^2-9}{12}:\sqrt{\dfrac{\left(a+3\right)^2}{16}}=\dfrac{a^2-9}{12}:\dfrac{\left|a+3\right|}{4}=\dfrac{\left(a-3\right)\left(a+3\right).4}{-12\left(a+3\right)}=\dfrac{3-a}{3}\)
\(6a+3b+2c=abc\Leftrightarrow\dfrac{2}{ab}+\dfrac{3}{ac}+\dfrac{6}{bc}=1\)
Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(Q=\dfrac{1}{\sqrt{\dfrac{1}{x^2}+1}}+\dfrac{2}{\sqrt{\dfrac{4}{y^2}+4}}+\dfrac{3}{\sqrt{\dfrac{9}{z^2}+9}}=\dfrac{x}{\sqrt{x^2+1}}+\dfrac{y}{\sqrt{y^2+1}}+\dfrac{z}{\sqrt{z^2+1}}\)
\(Q=\dfrac{x}{\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{\sqrt{z^2+xy+yz+zx}}\)
\(Q=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\)
\(Q\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)=\dfrac{3}{2}\)
\(Q_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(\left(a;b;c\right)=\left(\sqrt{3};2\sqrt{3};3\sqrt{3}\right)\)
Lời giải :
\(C=\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\)
\(C=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\)
\(C=\left|a+3\right|+\left|a-3\right|\)
p/s: bạn nhớ viết kĩ yêu cầu của đề bài nhé