Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\)
\(=\left|a+3\right|+\left|a-3\right|\)
Vì \(-3\le a\le3\)\(\Rightarrow\left|a+3\right|=a+3\)và \(\left|a-3\right|=-\left(a-3\right)=-a+3\)
\(\Rightarrow\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\left(a+3\right)+\left(-a+3\right)=6\)
\(A=\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\\ =\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\\ \\ =a+3+3-a\\ =6\)
\(B=\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\\ =\sqrt{\left(a-1\right)+2\sqrt{a-1}+1}+\sqrt{\left(a-1\right)-2\sqrt{a-1}+1}\\ =\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\\ =\sqrt{a-1}+1+1-\sqrt{a-1}\\ =2\)
\(a,\sqrt{64a^2}+2a\left(a\ge0\right)\\ < =>\sqrt{8^2.a^2}+2a\\ < =>\sqrt{\left(8a\right)^2+2a}\\ < =>\left|8a\right|+2a\\ < =>8a+2a\\ < =>10a\left(TM\right)vìa\ge0\)
\(b,3\sqrt{9a^6}-6a^3\left(a\in R\right)\\ < =>3\sqrt{\left(3a^2\right)^2}-6a^3\\ < =>3\left|3a^3\right|-6a^3\\ \)
Nếu \(a\ge0\) thì giá trị của biểu thức là:
\(3.3a^2-6a^2\\ =9a^3-6a^3\\ =3a^3\)
Nếu a<0 thì giá trị của biểu thức là:
\(3\left(-3a^3\right)-6a^3=-9a^3\\ =-6a^3=-15a^3\)
\(c,\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\left(a\ge3\right)\\ =\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\\ =\left|a+3\right|+\left|a-3\right|\\ =a+3+a-3\\ =2a\)
d, \(D=\sqrt{3+2\sqrt{2}}=\sqrt{2+2.\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
e,\(E=\sqrt{8-2\sqrt{15}}=\sqrt{5-2.\sqrt{5}.\sqrt{3}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}-\sqrt{3}\)
a,ĐKXĐ: \(\forall x\in R\)
\(\Rightarrow A=\left|a+3\right|+\left|a-3\right|\)\(=\left|-a-3\right|+\left|a-3\right|\)
Vì \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) *Dấu ''='' xảy ra\(\Leftrightarrow A.B\ge0\) *
\(\Rightarrow A\ge\left|-a-3+a-3\right|=6\)
Dấu ''='' xảy ra \(\Leftrightarrow\left(-a-3\right)\left(a-3\right)\ge0\Leftrightarrow\left(a+3\right)\left(a-3\right)\ge0\)
\(\Leftrightarrow-3\le a\le3\)
Vậy ...
Bạn tự tìm điều kiện xác định nhé :)
\(Q=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{3}{\sqrt{x}+3}:\frac{9-x+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}\)
Ôi, trang wed không tự nhận diện được công thức latex. Mình đăng lại bài giải:
a) Ta có
\(4T=\frac{4}{1+\sqrt{5}}+\frac{4}{\sqrt{5}+\sqrt{9}}+...+\frac{4}{\sqrt{2013}+\sqrt{2017}}\)
\(=\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{5}+1}+...+\frac{\left(\sqrt{2017}+\sqrt{2013}\right)\left(\sqrt{2017}-\sqrt{2013}\right)}{\sqrt{2017}+\sqrt{2013}}\)
\(=\sqrt{5}-1+\sqrt{9}-\sqrt{5}+\sqrt{13}-\sqrt{9}+...+\sqrt{2017}-\sqrt{2013}\)
\(=\sqrt{2017}-1\)
\(\Rightarrow T=\frac{\sqrt{2017}-1}{4}\)
b) Ta có
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2-1}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2}\sqrt{1}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)
Tương tự ta có
\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)
......................
\(\frac{1}{100\sqrt{99}+99\sqrt{100}}=\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
Suy ra
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
a)\[\begin{array}{l}
4T = \frac{4}{{1 + \sqrt 5 }} + \frac{4}{{\sqrt 5 + \sqrt 9 }} + ... + \frac{4}{{\sqrt {2013} + \sqrt {2017} }}\\
= \frac{{(\sqrt 5 + 1)(\sqrt 5 - 1)}}{{1 + \sqrt 5 }} + ... + \frac{{(\sqrt {2017} + \sqrt {2013} )(\sqrt {2017} - \sqrt {2013} )}}{{\sqrt {2013} + \sqrt {2017} }}\\
= \sqrt 5 - 1 + \sqrt 9 - \sqrt 5 + ... + \sqrt {2017} - \sqrt {2013} \\
= 1 + \sqrt 5 - \sqrt 5 + \sqrt 9 - \sqrt 9 + ... + \sqrt {2013} - \sqrt {2013} + \sqrt {2017} \\
= 1 + \sqrt {2017} \\
\Rightarrow T = \frac{{1 + \sqrt {2017} }}{4}
\end{array}\]
Làm nốt ::v
\(2.3\sqrt{\left(a-2\right)^2}=3\text{ |}a-2\text{ |}=3\left(a-2\right)\left(a< 2\right)\)
\(3.\sqrt{81a^4}+3a^2=\sqrt{3^4.a^4}+3a^2=9a^2+3a^2=12a^2\)
\(4.\sqrt{64a^2}+2a=\text{ |}8a\text{ |}+2a=8a+2a=10a\left(a>=0\right)\)
\(6.\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}=\text{ |}a+3\text{ |}+\text{ |}a-3\text{ |}\)
\(7.\dfrac{\sqrt{1-2x+x^2}}{x-1}=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\text{ |}x-1\text{ |}}{x-1}\)
\(8.\dfrac{\sqrt{9x^2-6x+1}}{9x^2-1}=\dfrac{\sqrt{\left(3x-1\right)^2}}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{\text{ |}3x-1\text{ |}}{\left(3x-1\right)\left(3x+1\right)}\)
\(9.4-x-\sqrt{4-4x+x^2}=4-x-\sqrt{\left(x-2\right)^2}=4-x-\text{ |}x-2\text{ |}\)
Mình làm ba câu mẫu, bạn theo đó mà làm các câu còn lại.
Giải:
1) \(2\sqrt{a^2}\)
\(=2\left|a\right|\)
\(=2a\left(a\ge0\right)\)
Vậy ...
5) \(3\sqrt{9a^6}-6a^3\)
\(=3\sqrt{\left(3a^3\right)^2}-6a^3\)
\(=3.3a^3-6a^3\)
\(=9a^3-6a^3\)
\(=3a^3\)
Vậy ...
10) \(C=\sqrt{4x^2-4x+1}-\sqrt{4x^2+4x+1}\)
\(\Leftrightarrow C=\sqrt{\left(2x-1\right)^2}-\sqrt{\left(2x+1\right)^2}\)
\(\Leftrightarrow C=2x-1^2-\left(2x+1^2\right)\)
\(\Leftrightarrow C=2x-1-2x-1\)
\(\Leftrightarrow C=-2\)
Vậy ...
\(\hept{\begin{cases}\left|x-2\right|+2\sqrt{y+3}=9\\x+\sqrt{y+3}=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-2\right|+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)(1)
Đặt \(\hept{\begin{cases}x-2=a\\\sqrt{y+3}=b\left(\ge0\right)\end{cases}}\)
Xét: \(x\ge2\)
=> (1) trở thành \(\Leftrightarrow\hept{\begin{cases}x-2+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+2b=9\\a+b=-3\end{cases}}\)
Xét \(x< 2\)
=> (1) trở thành \(\Leftrightarrow\hept{\begin{cases}-\left(x-2\right)+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-a+2b=9\\a+b=-3\end{cases}}\)
Từ hệ pt trên \(< =>\hept{\begin{cases}|x-2|+2\sqrt{y+3}=9\\x+\sqrt{y+3}=-1\end{cases}}\)
\(< =>\hept{\begin{cases}|x-2|+2\sqrt{y+3}=9\\2x+2\sqrt{y+3}=-2\end{cases}}\)
\(< =>\hept{\begin{cases}|x-2|-2x=11\\x+\sqrt{y+3}=-1\end{cases}}\)
Xét \(x\ge2\)=> \(|x-2|=\left(x-2\right)\)
\(< =>\hept{\begin{cases}x-2-2x=11\\x+\sqrt{y+3}=-1\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\-13+\sqrt{y+3}=-1\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\\sqrt{y+3}=12\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\\sqrt{y+3}=\sqrt{144}\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\y=141\end{cases}}\)
Có ai check cái :( e mới học dạng này nên chưa chắc :(((
\(\sqrt{a^2+6a+9}=\sqrt{\left(a+3\right)^2}=\left|a+3\right|=a+3\)
\(\sqrt{a^2+6a+9}=\sqrt{a^2+2.a.3+3^2}=\sqrt{\left(a+3\right)^2}=\left|a+3\right|\)