Cho tam giác ABC đều . Gọi M là trung điểm BC . CM : BÂM = 30 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\Rightarrow\widehat{BAC}=180^0-60^0-30^0=90^0\)
Do đó tam giác ABC vuông tại A
Trên tia đối MA lấy D sao cho M là trung điểm AD
\(\left\{{}\begin{matrix}CM=MB\\AM=MD\\\widehat{CMA}=\widehat{BMD}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{CAM}=\widehat{MDB}\)
Mà \(\widehat{CAM}+\widehat{MAB}=\widehat{BAC}=90^0\Rightarrow\widehat{MDB}+\widehat{MAB}=90^0\)
Mà \(\widehat{MDB}+\widehat{MAB}+\widehat{DBA}=180^0\Rightarrow\widehat{DBA}=90^0\)
\(\left\{{}\begin{matrix}\widehat{DBA}=\widehat{BAC}\left(=90^0\right)\\AC=BD\\AB.chung\end{matrix}\right.\Rightarrow\Delta BAC=\Delta ABD\left(c.g.c\right)\\ \Rightarrow AD=BC\\ \Rightarrow AM=MB\left(\dfrac{1}{2}AD=\dfrac{1}{2}BC\right)\)
Do đó tam giác ABM cân tại M
Mà có \(\widehat{ABM}=60^0\) nên tam giác ABM đều
Vì tam giác ABM đều nên \(AB=BM=\dfrac{1}{2}BC\)
a: Xét ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A và ΔMDC vuông tại M có
\(\widehat{MCD}\) chung
Do đó: ΔABC~ΔMDC
b: Ta có: M là trung điểm của BC
=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)
Ta có: ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)
Ta có; ΔABC~ΔMDC
=>\(\dfrac{AB}{MD}=\dfrac{BC}{DC}=\dfrac{AC}{MC}\)
=>\(\dfrac{18}{MD}=\dfrac{30}{DC}=\dfrac{24}{15}=\dfrac{8}{5}\)
=>\(MD=18\cdot\dfrac{5}{8}=\dfrac{90}{8}=\dfrac{45}{4}\left(cm\right);DC=30\cdot\dfrac{5}{8}=\dfrac{150}{8}=\dfrac{75}{4}\left(cm\right)\)
c: Xét ΔBME vuông tại M và ΔBAC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔBME~ΔBAC
=>\(\dfrac{BE}{BC}=\dfrac{BM}{BA}\)
=>\(\dfrac{BE}{30}=\dfrac{15}{18}=\dfrac{5}{6}\)
=>BE=25(cm)
Ta có: BE=BA+AE
=>AE+18=25
=>AE=7(cm)
ΔCAE vuông tại A
=>\(CA^2+AE^2=CE^2\)
=>\(CE^2=7^2+24^2=625\)
=>\(CE=\sqrt{625}=25\left(cm\right)\)
ND//AB
=>CN/CA=CD/CB
=>CN=CD
=>ΔNCD đều
=>NC=ND=CD
DM//AC
=>BD/BC=BM/BA
=>BD=BM
góc B=60 độ
=>ΔBMD đều
=>BM=BD=MD
góc MDC=180-60=120 độ
góc BDN=180-60=120 độ
=>góc MDC=góc BDN
Xét ΔBDN và ΔMDC có
BD=MD
góc BDN=góc MDC
DN=DC
=>ΔBDN=ΔMDC
=>BN=MC
=>BI=IN=KM=KC
Xét ΔKCD và ΔIND có
KC=IN
góc KCD=góc IND
CD=ND
=>ΔKCD=ΔIND
=>KD=ID
ΔKCD=ΔIND
=>góc IDN=góc KDC
=>góc KDI=60 độ
=>ΔKID đều
a: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^0+\widehat{BAC}\)
\(\widehat{CAD}=\widehat{DAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
=>\(\widehat{BAE}=\widehat{CAD}\)
Xét ΔBAE và ΔDAC có
BA=DA
\(\widehat{BAE}=\widehat{DAC}\)
AE=AC
Do đó: ΔBAE=ΔDAC
=>BE=CD
b: Gọi giao điểm của BE với CD là H, giao điểm của BE với AC là G
ΔDAC=ΔBAE
=>\(\widehat{AEB}=\widehat{ACD}\)
Xét ΔEAG có \(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=180^0\)
Xét ΔGHC có \(\widehat{GHC}+\widehat{GCH}+\widehat{HGC}=180^0\)
=>\(\widehat{AEG}+\widehat{EGA}+\widehat{EAG}=\widehat{GHC}+\widehat{GCH}+\widehat{HGC}\)
=>\(\widehat{EAG}=\widehat{GHC}=90^0\)
=>BE vuông góc CD
Hình (tự vẽ)
GT: - ΔABC đều (AB = AC = BC ; Â = B = C = 60o)
- BM = CM
KL: BÂM = 30o
Xét ΔABM và ΔACM có:
AB = AC (gt)
B = C = 60o
BM = CM (gt)
Do đó: ΔABM = ΔACM (c-g-c)
⇒ BÂM = MÂC (hai góc tương ứng)
Mà BÂM + MÂC = Â = 60o
⇒ BÂM = MÂC = 60o : 2 = 30o