Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E D M S N K I
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Sửa đề: Trên tia đối của tia MA lấy D sao cho MA=MD
Xét ΔMAB vuông tại M và ΔMDC vuông tại M có
MA=MD
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
A X B C D M
a) Xét ΔAMB và ΔDMC có:
AM = DM ( gt )
góc AMB = DMC ( đối đỉnh)
MB = MC ( suy từ gt )
=> ΔAMB = ΔDMC ( c.g.c )
b) Xét ΔAMC và ΔDMB có:
AM = DM (GT)
AMC = DMB ( đối đỉnh )
MC = MB (SUY TỪ GT)
=> ΔAMC = ΔDMB ( c.g.c )
=> góc ACM = MBD ( 2 góc tương ứng )
mà 2 góc này ở vị trí so le trong nên AC // BD
c) Do Ax // BC nên góc HAC = ACB ( so le trong )
Xét ΔHAC và ΔBCA có:
AH = BC (gt)
góc HAC = ACB ( CM TRÊN)
AC chung
=> ΔHAC = ΔBCA (c.g.c)
=> góc HCA = CAB ( 2 góc tương ứng)
mà 2 góc này ở vị trí so le trong nên AB // HC (1)
Theo câu a ΔAMB = ΔDMC nên góc ABM = MCD ( 2 góc tương ứng )
mà 2 góc ở này ở vị trí so le trong nên AB // CD (2)
Từ (1) và (2) suy ra H, C, D thẳng hàng → đpcm
Chúc học tốt nguyễn ngọc trang
Bạn giỏi quá! Mình đi đúng hướng rồi mà đoạn sau cũng không nghĩ ra lun.
Khâm phục!