Tìm x để phân thức \(\frac{2}{5-2x}\)không âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
`x(x-2)-(x+1)(x+2)<12`
`<=>x^2-2x-(x^2+3x+2)<12`
`<=>-5x-2<12`
`<=>-5x<14`
`<=>x> -14/5`
`=>S={x|x> -14/5}.`
`2/(5-2x)>=0(x ne 5/2)`
`<=>5-2x>0`
`<=>2x<5`
`=>x<5/2`
Bài 2:
Để \(\dfrac{2}{5-2x}\ge0\) thì \(5-2x>0\)
hay \(x< \dfrac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3x^2+6x^2\left(xemlai\right)6x^2hay\left(6x\right)}{x^3+2x^2+x+2}=\frac{9x^2\left(culamtheode\right)}{x^3\left(x+2\right)+x+2=9}=\frac{9x^2}{\left(x^3+1\right)\left(x+2\right)}=\frac{9x^2}{\left(x+1\right)\left(x+2\right)\left(x^2-x+1\right)}\)
a)
\(x+1\ne0;x+2\ne0;x^2-x+1\ne0\)
\(x\ne-1;-2\)
b) khi 1<x<2 gia tri phan thuc <0 (-) xem lai
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{2}{5-2x}\)không âm \(\Leftrightarrow\)\(\frac{2}{5-2x}\ge0\)
mà \(2>0\)
\(\Rightarrow\)\(5-2x>0\)
\(\Leftrightarrow\)\(2x< 5\)
\(\Leftrightarrow\)\(x< 2,5\)
Vậy...
Ta có :
\(\frac{2}{5-2x}\ge0\)
\(\Leftrightarrow\)\(5-2x>0\) ( vì mẫu phải khác 0 )
\(\Leftrightarrow\)\(2x< 5\)
\(\Leftrightarrow\)\(x< \frac{5}{2}\)
Vậy \(x< \frac{5}{2}\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)
\(=\frac{3x^2\left(x+2\right)}{\left(x+2\right)\left(x^2+1\right)}\)
\(\RightarrowĐKXĐ:x\ne-2\)
\(b,\) Với \(x\ne-2\) thì :
\(\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{\left(x+2\right)\left(x^2+1\right)}\)
\(=\frac{3x^2}{x^2+1}\)
Vì \(3x^2,\left(x^2+1\right)\ge0vs\forall x\)
\(\Rightarrow\frac{3x^2}{x^2+1}\ge0\)
Do đó : Giá trị của phân thức luôn không âm khi nó được xác định.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Phân thức xác định \(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+1\right)\ne0\)
\(\Rightarrow\orbr{\begin{cases}2x\ne0\\x+1\ne0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ne0\\x\ne-1\end{cases}}\)
b) Để phân thức bằng 1 thì :
\(5x+5=2x^2+2x\)
\(\Leftrightarrow5\left(x+1\right)=2x\left(x+1\right)\)
\(\Leftrightarrow5=2x\)
\(\Leftrightarrow x=\frac{5}{2}\)
Vậy.......
Phân thức xác định
\(\Leftrightarrow2x^2+2x\ne0\)
\(\Leftrightarrow2x\left(x+2\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}}\)
Vậy với \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\) thì phân thức xác định
![](https://rs.olm.vn/images/avt/0.png?1311)
A/ Theo đề ta có \(\frac{x}{2}-\frac{x-5}{10}\) không âm
\(\Rightarrow\frac{x}{2}-\frac{x-5}{10}\ge0\)
\(\Rightarrow\frac{5x}{10}-\frac{x-5}{10}\ge0\)
\(\Rightarrow\frac{5x-x+5}{10}\ge0\)
\(\Rightarrow\frac{4x+5}{10}\ge0\)
\(\Rightarrow4x+5\ge0\)
\(\Rightarrow4x\ge-5\)
\(\Rightarrow x\ge-\frac{5}{4}\)
\(\Rightarrow S=\left\{x\in R;x\ge-\frac{5}{4}\right\}\)
B/ theo đề ta có \(\frac{2x-3}{8}-\frac{x-5}{12}\) không dương
\(\Rightarrow\frac{2x-3}{8}-\frac{x-5}{12}\le0\)
\(\Rightarrow\frac{3\left(2x-3\right)}{24}-\frac{2\left(x-5\right)}{24}\le0\)
\(\Rightarrow\frac{6x-9}{24}-\frac{2x-10}{24}\le0\)
\(\Rightarrow\frac{6x-9-2x+10}{24}\le0\)
\(\Rightarrow\frac{4x-1}{24}\le0\)
\(\Rightarrow4x-1\le0\)
\(\Rightarrow4x\le1\)
\(\Rightarrow x\le\frac{1}{4}\)
\(\Rightarrow S=\left\{x\in R;x\le\frac{1}{4}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1
Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )
Bài 2 :
Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)
\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)
Vậy phương trình có tập nghiệm là S = { 3/11 }
![](https://rs.olm.vn/images/avt/0.png?1311)
để biểu thức âm thì 3-2x<0 ( vì x^2-x+2\(\ge\)0 luôn đúng)
3-2x<0\(\Leftrightarrow\)x>1,5
vậy với x>1,5 thì biểu thức âm
Phân thức \(\frac{2}{5-2x}\)không âm
\(\Leftrightarrow\frac{2}{5-2x}\ge0\)
Mà \(2>0\)
\(\Rightarrow5-2x>0\)
\(\Leftrightarrow5>2x\)
\(\Leftrightarrow x< \frac{5}{2}\)