![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)
\(=\frac{3x^2\left(x+2\right)}{\left(x+2\right)\left(x^2+1\right)}\)
\(\RightarrowĐKXĐ:x\ne-2\)
\(b,\) Với \(x\ne-2\) thì :
\(\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{\left(x+2\right)\left(x^2+1\right)}\)
\(=\frac{3x^2}{x^2+1}\)
Vì \(3x^2,\left(x^2+1\right)\ge0vs\forall x\)
\(\Rightarrow\frac{3x^2}{x^2+1}\ge0\)
Do đó : Giá trị của phân thức luôn không âm khi nó được xác định.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1
Ta có : \(\frac{2x+2}{x^2-1}=0\)ĐK : \(x\ne\pm1\)
\(\Leftrightarrow2x+2=0\Leftrightarrow x=-1\)( ktm )
Bài 2 :
Ta có : \(\frac{2x+3}{-x+5}=\frac{3}{4}\)ĐK : \(x\ne5\)
\(\Leftrightarrow8x+12=-3x+15\Leftrightarrow11x=3\Leftrightarrow x=\frac{3}{11}\)
Vậy phương trình có tập nghiệm là S = { 3/11 }
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ : \(\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Rightarrow x\ne0;x\ne-2\left(1\right)}\)
Ta có P = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)
\(=\frac{x^2+4x+5}{2\left(x+5\right)}\)
c) P = 1
<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=1\Rightarrow x^2+4x+5=2\left(x+5\right)\)
=> x2 + 4x + 5 - 2x - 10 = 0
=> x2 + 2x - 5 = 0
=> x2 + 2x + 1 - 6 = 0
=> (x + 1)2 = 6
=> \(\orbr{\begin{cases}x+1=\sqrt{6}\\x+1=-\sqrt{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{6}-1\\x=-\sqrt{6}-1\end{cases}}\)(tm (1))
d) P = -1/2
<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=-\frac{1}{2}\)
=> 2(x2 + 4x + 5) = -2(x + 5)
=> 2x2 + 8x + 10 = -2x - 10
=> 2x2 + 8x + 10 + 2x + 10 = 0
=> 2x2 + 10x + 20 = 0
=> 2(x2 + 5x + 10) = 0
=> x2 + 5x + 10 = 0
=> \(x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{15}{4}=0\)
=> \(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\)
=> \(x\in\varnothing\left(\text{Vì }\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\forall x\right)\)
Vậy không tồn tại x để P = -1/2
\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
a) ĐK : x ≠ 0 ; x ≠ -5
b) \(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)
\(=\frac{x^2+4x+5}{2x+10}\)
c) Để P = 1
thì \(\frac{x^2+4x+5}{2x+10}=1\)
=> x2 + 4x + 5 = 2x + 10
=> x2 + 4x + 5 - 2x - 10 = 0
=> x2 - 2x - 5 = 0
=> ( x2 - 2x + 1 ) - 6 = 0
=> ( x - 1 )2 - ( √6 )2 = 0
=> ( x - 1 - √6 )( x - 1 + √6 ) = 0
=> x = 1 + √6 hoặc x = 1 - √6
Cả hai giá trị đều thỏa x ≠ 0 ; x ≠ -5
Vậy x = 1 + √6 hoặc x = 1 - √6
d) Để P = -1/2
thì \(\frac{x^2+4x+5}{2x+10}=\frac{-1}{2}\)
=> 2( x2 + 4x + 5 ) = -2x - 10
=> 2x2 + 8x + 10 + 2x + 10 = 0
=> 2x2 + 10x + 20 = 0
=> 2( x2 + 5x + 10 ) = 0
=> x2 + 5x + 10 = 0 (*)
Ta có : x2 + 5x + 10 = ( x2 + 5x + 25/4 ) + 15/4 = ( x + 5/2 )2 + 15/4 ≥ 15/4 > 0 ∀ x
tức (*) không xảy ra
Vậy không có giá trị của x để P = -1/2
![](https://rs.olm.vn/images/avt/0.png?1311)
A/ Theo đề ta có \(\frac{x}{2}-\frac{x-5}{10}\) không âm
\(\Rightarrow\frac{x}{2}-\frac{x-5}{10}\ge0\)
\(\Rightarrow\frac{5x}{10}-\frac{x-5}{10}\ge0\)
\(\Rightarrow\frac{5x-x+5}{10}\ge0\)
\(\Rightarrow\frac{4x+5}{10}\ge0\)
\(\Rightarrow4x+5\ge0\)
\(\Rightarrow4x\ge-5\)
\(\Rightarrow x\ge-\frac{5}{4}\)
\(\Rightarrow S=\left\{x\in R;x\ge-\frac{5}{4}\right\}\)
B/ theo đề ta có \(\frac{2x-3}{8}-\frac{x-5}{12}\) không dương
\(\Rightarrow\frac{2x-3}{8}-\frac{x-5}{12}\le0\)
\(\Rightarrow\frac{3\left(2x-3\right)}{24}-\frac{2\left(x-5\right)}{24}\le0\)
\(\Rightarrow\frac{6x-9}{24}-\frac{2x-10}{24}\le0\)
\(\Rightarrow\frac{6x-9-2x+10}{24}\le0\)
\(\Rightarrow\frac{4x-1}{24}\le0\)
\(\Rightarrow4x-1\le0\)
\(\Rightarrow4x\le1\)
\(\Rightarrow x\le\frac{1}{4}\)
\(\Rightarrow S=\left\{x\in R;x\le\frac{1}{4}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3x^2+6x^2\left(xemlai\right)6x^2hay\left(6x\right)}{x^3+2x^2+x+2}=\frac{9x^2\left(culamtheode\right)}{x^3\left(x+2\right)+x+2=9}=\frac{9x^2}{\left(x^3+1\right)\left(x+2\right)}=\frac{9x^2}{\left(x+1\right)\left(x+2\right)\left(x^2-x+1\right)}\)
a)
\(x+1\ne0;x+2\ne0;x^2-x+1\ne0\)
\(x\ne-1;-2\)
b) khi 1<x<2 gia tri phan thuc <0 (-) xem lai
![](https://rs.olm.vn/images/avt/0.png?1311)
để biểu thức âm thì 3-2x<0 ( vì x^2-x+2\(\ge\)0 luôn đúng)
3-2x<0\(\Leftrightarrow\)x>1,5
vậy với x>1,5 thì biểu thức âm
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ A = \(2x-5\ge0\)
\(\Leftrightarrow\)\(2x\ge5\)
\(\Leftrightarrow\)\(x\ge\frac{5}{2}\)
b/ \(\frac{4x-1}{3}\)- \(\frac{2-x}{15}\)\(\le\)\(\frac{10x-3}{5}\)
\(\Leftrightarrow\)5(4x + 1) - 2 - x \(\le\)3(10x - 3)
\(\Leftrightarrow\)20x + 5 - 2 -x \(\le\)30x - 9
\(\Leftrightarrow\)9x - 30x \(\le\)-9 + 2
\(\Leftrightarrow\)-21x \(\le\)-7
\(\Leftrightarrow\)x \(\ge\)\(\frac{1}{3}\)
Kết luận và biểu diễn tập nghiệm nha
Phân thức \(\frac{2}{5-2x}\)không âm
\(\Leftrightarrow\frac{2}{5-2x}\ge0\)
Mà \(2>0\)
\(\Rightarrow5-2x>0\)
\(\Leftrightarrow5>2x\)
\(\Leftrightarrow x< \frac{5}{2}\)