K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2019

A B C x H D H 2 O y O 2

22 tháng 3 2020

\(\text{GIẢI :}\)

A B C H D O I x y

a) Xét \(\diamond\text{ACDO}\)\(\widehat{\text{OAC}}=\widehat{\text{ACD}}=\widehat{\text{CDO}}\text{ }\left(=90^0\right)\)

\(\Rightarrow\text{ }\diamond\text{ACDO}\) là hình chữ nhật.

\(AC=CD\text{ }\Rightarrow\text{ }\diamond\text{ACDO}\) là hình vuông.

b) Xét ABC , có : \(\widehat{ACB}=90^0-\widehat{ABC}\) (1)

Xét ABH , có : \(\widehat{BAH}=90^{\text{o}}-\widehat{ABH}\)

hay \(\widehat{BAH}=90^{\text{o}}-\widehat{ABC}\) (2)

Từ (1) và (2) \(\Rightarrow\text{ }\widehat{BAH}=\widehat{ACB}\).

Xét \(\bigtriangleup\text{ABC và }\bigtriangleup\text{OIA}\), có :

\(\widehat{IOA}=\widehat{BAC}\text{ }\left(90^{\text{o}}\right)\)

\(AO=AC\) (vì \(\diamond\text{ACDO}\) là hình vuông)

\(\widehat{IAO}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\), \(\widehat{IAO}\)\(\widehat{BAH}\) đối đỉnh)

\(\Rightarrow\bigtriangleup\text{ABC}=\bigtriangleup\text{OIA}\) (g.c.g)

\(\Rightarrow\text{ IA = BC}\) (2 cạnh tương ứng) (đpcm).

16 tháng 11 2019
Bài làm

A B C x y O O 2 H

1/ Xét \(\diamond ACDO\), có :

\(\widehat{BAC}=\widehat{ACD}=\widehat{CDO}=90^0\)

\(\Rightarrow\diamond ACDO\) là hình chữ nhật

mà \(AC=CD\)

\(\Rightarrow\diamond ACDO\) là hình vuông.

2/ Ta có :

\(\bigtriangleup ABC\) vuông tại A \(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^0\)

\(\bigtriangleup ABH\) vuông tại H \(\Rightarrow\widehat{BAH}+\widehat{ABC}=90^0\)

Do đó \(\widehat{BAH}=\widehat{ACB}\)

Xét \(\bigtriangleup ABC\) và \(\bigtriangleup AOO_2\), có :

\(\widehat{BAC}=\widehat{O_2OA}=90^0\) (\(\diamond ACDO\) là hình vuông)

\(AC=AO\) (\(\diamond ACDO\) là hình vuông)

\(\widehat{OAO_2}=\widehat{ACB}\) (vì \(\widehat{BAH}=\widehat{ACB}\))

\(\Rightarrow\bigtriangleup ABC=\bigtriangleup AOO_2\text{ }\left(g.c.g\right)\).

31 tháng 3 2019

Giải : 

A B C D H x E G

a/ Vì \(DH\perp BC\)

        \(Cx\perp BC\)

\(\Rightarrow DH//Cx\)

b/ Xét , có :

\(\widehat{HDE}=\widehat{CED}\text{ (hai góc so le trong của CE//DH)}\)

\(HD=EC\text{ (gt)}\)

\(\widehat{DHC}=\widehat{ECH}\left(=90^0\right)\)

\(\Rightarrow\Delta DHG=\Delta ECG\left(g.c.g\right)\).

c/ Vì \(\Delta DHG=\Delta ECG\left(c.m.t\right)\Rightarrow DG=GC\text{ (hai cạnh tương ứng)}\)

\(\Rightarrow\text{G là trung điểm của đoạn thẳng DE}\).

31 tháng 3 2019

Đề thi mà

4 tháng 3 2020

Bài 1:

+ Vì E là hình chiếu của B trên \(AM\left(gt\right)\)

=> \(BE\perp AM.\)

=> \(\widehat{BEM}=90^0\)

=> \(\Delta BEM\) vuông tại \(E.\)

=> Cạnh huyền \(BM\) là cạnh lớn nhất (tính chất tam giác vuông).

=> \(BM>BE\) (1).

+ Vì F là hình chiếu của C trên \(AM\left(gt\right)\)

=> \(CF\perp AM.\)

=> \(\widehat{CFM}=90^0\)

=> \(\Delta CFM\) vuông tại \(F.\)

=> Cạnh huyền \(CM\) là cạnh lớn nhất (tính chất tam giác vuông).

=> \(CM>CF\) (2).

Cộng theo vế (1) và (2) ta được:

\(BM+CM>BE+CF\)

\(BM+CM=BC\left(gt\right).\)

=> \(BC>BE+CF\)

Hay \(BE+CF< BC\left(đpcm\right).\)

Chúc bạn học tốt!

Bài 4 nè e :)) Phải nói rằng bài của em quá khó luôn !!

Cho tam giác ABC, kẻ AH, BK vuông góc với BC, AC tại H, K, tìm số đo các góc A, B, C - minh dương