K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

a, Xét tam giác ABM và tam giác CBM có 

MB chung 

MA = MC (gt) 

AB = BC (gt) 

=> tam giác ABM = tam giác CBM (c.c.c)

b , Xét tam giác NMC và tam giác EMA có :

Góc NMC = Góc EMA ( 2 góc đối đỉnh )

MN = ME (gt) 

MC = MA (gt)

=> tam giác NMC = tam giác EMA (c.g.c)

=> CN = AE ( 2 cạnh t/ứ)

c, Vì tam giác ABC cân tại B ( AB = BC) 

Nên Góc A = góc C = 45o

Xét tam giác vuông MEA có :

Góc A + góc E + góc M = 180o

45o+90o+ góc M = 180o

Góc M = 180o-45o-90o

Góc M = 45o

Hay góc AME = 45o

Mà góc CMN = AME (cmt) 

=> Góc CMN = 45o

k cho mk nha 

22 tháng 12 2018

a,theo gt ta có  tam giác ABC có AB=BC.=>tam giác abc cân tại b=>góc bac=góc bca(tc tam giác cân)

xét Tam giác ABM và Tam giác CBM. có

AB=BC(gt)

góc bac=góc bca(cmt)

ma =mc(gt)

=> Tam giác ABM=Tam giác CBM.(cgc)

b,xét tam giác aem và tam giác cnm có

em=mn(gt)

am=cm(gt)

góc ema= góc cmn(đối đỉnh)

=>tam giác aem =tam giác cnm (cgc)

=>CN=AE(2 cạnh tương ứng)

15 tháng 12 2023

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\widehat{AMB}=\widehat{AMC}\)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)

nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)

b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có

MB=MC

MA=MD

Do đó: ΔMBA=ΔMCD

=>\(\widehat{MBA}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó: ΔBEM=ΔCFM

=>ME=MF 

ΔBEM=ΔCFM

=>\(\widehat{BME}=\widehat{CMF}\)

mà \(\widehat{BME}+\widehat{EMC}=180^0\)(hai góc kề bù)

nên \(\widehat{CMF}+\widehat{EMC}=180^0\)

=>F,M,E thẳng hàng

mà MF=ME

nên M là trung điểm của EF

a: Xét ΔAMD vuông tại M và ΔAND vuông tại N có

AD chung

góc MAD=góc NAD

=>ΔMAD=ΔNAD

=>AM=AN

b: Xét ΔACB có AM/AB=AN/AC

nên MN//BC

c: Xét ΔADE có

AM vừa là đường cao, vừa là trung tuýen

=>ΔADE cân tại A

=>AD=AE

Xét ΔADF có

AN vừa là đường cao, vừa là trung tuyến

=>ΔADF cân tại A

=>AD=AF

=>AE=AF

=>ΔAEFcân tạiA

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có 

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên MCI^=NCI^(hai góc tương ứng)

hay BCA^=KCA^

Xét ΔBAC vuông tại A và ΔKAC vuông tại A có 

AC chung

BCA^=KCA^(cmt)

Do đó: ΔBAC=ΔKAC(cạnh góc vuông-góc nhọn kề)

⇒CB=CK(hai cạnh tương ứng)

Ta có: MI⊥AC(gt)

AB⊥AC(ΔABC vuông tại A)

Do đó: MI//AB(Định lí 1 từ vuông góc tới song song)

hay MN//KB

Xét ΔCKB có

M là trung điểm của CB(gt)

MN//KB(cmt)

Do đó: N là trung điểm của CK(Định lí 1 đường trung bình của tam giác)

c) Ta có: MA=ME(gt)

mà A,M,E thẳng hàng

nên M là trung điểm của AE

Xét tứ giác ABEC có

M là trung điểm của đường chéo BC(gt)

M là trung điểm của đường chéo AE(cmt)

Do đó: ABEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

hay AB//EC(Hai cạnh đối trong hình bình hành ABEC)

d) Ta có: ABEC là hình bình hành(cmt)

nên AB=EC(Hai cạnh đối trong hình bình hành ABEC)

mà AB=AK(ΔCBA=ΔCKA)

nên EC=AK

Ta có: AB//EC(Cmt)

nên CE//KA

Xét tứ giác AECK có 

CE//AK(cmt)

CE=AK(cmt)

Do đó: AECK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Xét ΔCAB có 

M là trung điểm của BC(gt)

MI//AB(cmt)

Do đó: I là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: AECK là hình bình hành(cmt)

nên Hai đường chéo AC và EK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của AC(cmt)

nên I là trung điểm của EK

hay E,I,K thẳng hàng(đpcm)

chúc bạn học tốt nha cái này mình cũng không chắc là đúng đó bạn :)

a) Xét ΔIMC vuông tại I và ΔINC vuông tại I có

CI chung

MI=NI(gt)

Do đó: ΔIMC=ΔINC(hai cạnh góc vuông)

b) Ta có: ΔIMC=ΔINC(cmt)

nên \(\widehat{MCI}=\widehat{NCI}\)(hai góc tương ứng)

hay \(\widehat{BCA}=\widehat{KCA}\)

Xét ΔCAB vuông tại A và ΔCAK vuông tại A có 

CA chung

\(\widehat{BCA}=\widehat{KCA}\)(cmt)

Do đó: ΔCAB=ΔCAK(Cạnh góc vuông-góc nhọn kề)

Suy ra: CA=CK(hai cạnh tương ứng)

Ta có: CN+NK=CK(N nằm giữa C và K)

CM+MB=CB(M nằm giữa C và B)

mà CK=CB(cmt)

và CN=CM(ΔCNI=ΔCMI)

nên NK=MB

mà \(MB=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên \(NK=\dfrac{BC}{2}\)

mà BC=KC(cmt)

nên \(NK=\dfrac{CK}{2}\)

mà điểm N nằm giữa hai điểm C và K

nên N là trung điểm của CK(đpcm)

c) Xét ΔAMB và ΔEMC có

MA=ME(gt)

\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔAMB=ΔEMC(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEC}\)(hai góc tương ứng)

mà \(\widehat{MAB}\) và \(\widehat{MEC}\) là hai góc ở vị trí so le trong

nên AB//EC(Dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF

26 tháng 2 2022

Cho tam giác ABC vuông tại B , M trên tia đối của t là trung điểm của BC. Trên tia AB lấy E sao cho MA=ME chứng minh rằng 

a.Tam giác ABM bằng tam giác ECM

b BC vuông góc với CE

 

.

 

 

a: Xét ΔABM và ΔECM có

MA=ME

\(\widehat{AMB}=\widehat{EMC}\)

MB=MC

Do đó: ΔABM=ΔECM

b: Xét tứ giác BACE có

M là trung điểm của BC

M là trung điểm của AE

Do đó: BACE là hình bình hành

Suy ra: CE//AB

hay CE⊥BC

10 tháng 7 2019

A B C D H E F M N

CM: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)

=> AD là tia p/giác của \(\widehat{BAC}\)

c) Xét t/giác MEB = t/giác NFC

có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)

  BM = CN (gt)

    \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 \(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)

=> AH là tia p/giác của \(\widehat{A}\)

Mà AD cũng là tia p/giác của \(\widehat{A}\)

=> AH \(\equiv\) AD 

=> A, D, H thẳng hàng

5 tháng 5 2023

M: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 �^=�^ (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  �^=�^ (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> ���^=���^ (2 góc t/ứng)

=> AD là tia p/giác của ���^

c) Xét t/giác MEB = t/giác NFC

có: ���^=���^=900 (gt)

  BM = CN (gt)

    �^=�^ (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> ���^=���^=1800−�^2 (1)

T/giác ABC cân tại A
=> �^=�^=1800−�^2 (2)

Từ (1) và (2) => ���^=�^

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 ���^=���^=900 (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> ���^=���^ (2 góc t/ứng)

=> AH là tia p/giác của �^

Mà AD cũng là tia p/giác của �^

=> AH  AD 

=> A, D, H thẳng hàng

25 tháng 4 2021

a) Xét ΔMAB và ΔMEC có 

MA=ME(gt)

ˆAMB=ˆEMCAMB^=EMC^(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔMAB=ΔMEC(c-g-c)

Có thể vẽ thêm hình không ạ