Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, góc BAD = góc CAE = 90
góc DAB + góc BAC = góc DAC
góc CAE + góc BAC = góc BAE
=> góc DAC = góc BAE
xét tam giác DAC và tam giác BAE có : AD = AB (gt)
AE = AC (gt)
=> tam giác DAC = tam giác BAE (c-g-c)
=> DC = BE (đn)
b, xét tam giác DNA và tam giác ENM có : NM = NA (gt)
DN = NE do N là trđ của DE (gt)
góc DNA = góc ENM (đối đỉnh)
=> tam giác DNA = tam giác ENM (c-g-c)
=> ME = DA (đn)
AD = AB (Gt)
=> AB = ME
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
b: Xét ΔMBA vuông tại M và ΔMCD vuông tại M có
MB=MC
MA=MD
Do đó: ΔMBA=ΔMCD
=>\(\widehat{MBA}=\widehat{MCD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
c: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó: ΔBEM=ΔCFM
=>ME=MF
ΔBEM=ΔCFM
=>\(\widehat{BME}=\widehat{CMF}\)
mà \(\widehat{BME}+\widehat{EMC}=180^0\)(hai góc kề bù)
nên \(\widehat{CMF}+\widehat{EMC}=180^0\)
=>F,M,E thẳng hàng
mà MF=ME
nên M là trung điểm của EF
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)
Câu hỏi của le thu giang - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài làm tương tự ở link trên.
Ta có hình vẽ:
A B C K H M E
a) Xét Δ ABH và Δ AKH có:
BH = KH (gt)
AHB = AHK = 90o
AH là cạnh chung
Do đó, Δ ABH = Δ AKH (c.g.c) (đpcm)
b) Xét Δ AMK và Δ CME có:
MK = ME (gt)
AMK = CME (đối đỉnh)
AM = CM (gt)
Do đó, Δ AMK = Δ CME (c.g.c)
=> AK = EC (2 cạnh tương ứng) (1)
Δ ABH = Δ AKH (câu a)
=> AB = AK (2 cạnh tương ứng) (2)
Từ (1) và (2) => EC = AB (đpcm)
c) Xét Δ AME và Δ CMK có:
AM = CM (gt)
AME = CMK (đối đỉnh)
ME = MK (gt)
Do đó Δ AME = Δ CMK (c.g.c)
=> AEM = CKM (2 góc tương ứng)
Mà AEM và CKM là 2 góc so le trong nên AE // KC hay AE // BC (đpcm)
A B K M C E H 1 2 3 4 1 1
Giải:
a) Xét \(\Delta ABH,\Delta AKH\) có:
\(BH=HK\left(gt\right)\)
\(\widehat{AHB}=\widehat{AHK}\)
AH: cạnh chung
\(\Rightarrow\Delta ABH=\Delta AKH\left(c-g-c\right)\)
b) Vì \(\Delta ABH=\Delta AKH\)
\(\Rightarrow AB=AK\) ( cạnh tương ứng ) (1)
Xét \(\Delta AMK,\Delta CME\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)
\(\widehat{M_1}=\widehat{M_2}\) ( đối đỉnh )
\(EM=KM\left(gt\right)\)
\(\Rightarrow\Delta AMK=\Delta CME\left(c-g-c\right)\)
\(\Rightarrow EC=AK\) ( cạnh tương ứng ) (2)
Từ (1) và (2) \(\Rightarrow EC=AB\left(=AK\right)\)
c) Xét \(\Delta AME\) và \(\Delta CMK\) có:
\(AM=MC\left(=\frac{1}{2}AC\right)\)
\(\widehat{M_3}=\widehat{M_4}\) ( đối đỉnh )
\(KM=EM\left(gt\right)\)
\(\Rightarrow\Delta AME=\Delta CMK\left(c-g-c\right)\)
\(\Rightarrow\widehat{E_1}=\widehat{K_1}\) ( góc tương ứng )
Mà \(\widehat{E_1}\) và \(\widehat{K_1}\) ở vị trí so le trong nên AE // KC hay AE // BC
Vậy a) \(\Delta ABH=\Delta AKH\)
b) EC = AB
c) AE // BC
a, Xét tam giác ABM và tam giác CBM có
MB chung
MA = MC (gt)
AB = BC (gt)
=> tam giác ABM = tam giác CBM (c.c.c)
b , Xét tam giác NMC và tam giác EMA có :
Góc NMC = Góc EMA ( 2 góc đối đỉnh )
MN = ME (gt)
MC = MA (gt)
=> tam giác NMC = tam giác EMA (c.g.c)
=> CN = AE ( 2 cạnh t/ứ)
c, Vì tam giác ABC cân tại B ( AB = BC)
Nên Góc A = góc C = 45o
Xét tam giác vuông MEA có :
Góc A + góc E + góc M = 180o
45o+90o+ góc M = 180o
Góc M = 180o-45o-90o
Góc M = 45o
Hay góc AME = 45o
Mà góc CMN = AME (cmt)
=> Góc CMN = 45o
k cho mk nha
a,theo gt ta có tam giác ABC có AB=BC.=>tam giác abc cân tại b=>góc bac=góc bca(tc tam giác cân)
xét Tam giác ABM và Tam giác CBM. có
AB=BC(gt)
góc bac=góc bca(cmt)
ma =mc(gt)
=> Tam giác ABM=Tam giác CBM.(cgc)
b,xét tam giác aem và tam giác cnm có
em=mn(gt)
am=cm(gt)
góc ema= góc cmn(đối đỉnh)
=>tam giác aem =tam giác cnm (cgc)
=>CN=AE(2 cạnh tương ứng)