4x(x-2018)-x+2008=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x\left(x-2018\right)-x+2018=0\)
\(\Rightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Rightarrow\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2018\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy ..................................................
#Kαrμto
\(4x\left(x-2018\right)-x+2018=0\)
\(4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)
xài dấu [ thì nên dùng dấu tương đương nha @greninja
\(4x\left(x-2018\right)-x+2018=0\)
\(\Leftrightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(x-2018\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)
Vậy x=1/4 hoặc x=2018
a) \(4x\left(x-2018\right)-x+2018=0\)
\(=>4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(=>\left(4x-1\right)\left(x-2018\right)=0\)
\(=>\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}}\)
vậy \(x=\frac{1}{4}\) hoặc \(x=2018\)
b) \(\left(x+1\right)^2=x+1\)
\(=>x^2+2x+1=x+1\)
\(=>x^2+2x+1-x-1=0\)
\(=>x^2+x=0\)
\(=>x\left(x+1\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
vậy \(x=0\)hoặc \(x=-1\)
Ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}\ge\frac{\left(sin^2x+cos^2x\right)^2}{m+n}=\frac{1}{m+n}\)
Dấu = xảy ra khi \(\frac{sin^2x}{m}=\frac{cos^2x}{n}\)
Thế vào điều kiện đề bài ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}.\left(sin^2x+cos^2x\right)=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}=\frac{1}{m+n}\left(1\right)\)
Ta cần chứng minh
\(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\frac{sin^{2006}}{m^{1003}}.\left(sin^2x+cos^2x\right)=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\left(\frac{sin^2}{m}\right)^{1003}=\frac{1}{\left(m+n\right)^{1003}}\left(2\right)\)
Từ (1) và (2) ta có điều phải chứng minh là đúng.
b,2x.(x-5)-x.(3+2x)=26
2x2 - 10x - 3x - 2x2 = 26
-13x = 26
x = -2
c, (x+7)2-x.(x-3)=12
x2 +14x +49 - x2 + 3x = 12
17x + 49 = 12
17x = - 37
x = \(\dfrac{-37}{17}\)
d, 9( x -2018) - x+ 2018 =0
9( x -2018) - (x -2018) = 0
( 9-1)(x -2018) = 0
8( x -2018) = 0
x -2018 = 0
x = 2018
a: =>2x+10-x^2-5=0
=>-x^2+2x+5=0
=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)
e: =>4x^2+4x+9x^2-4=15
=>13x^2+4x-19=0
=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)
\(4x\left(x-2018\right)-x+2018=0\)
\(\Rightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Rightarrow\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2018\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy.....................