![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a;x^3-\dfrac{1}{4}x=0\)
\(x\left(x^2-\dfrac{1}{4}\right)=0\)
\(x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(b,x^2-10x=-25\)
\(x^2-10x+25=0\)
\(\left(x-5\right)^2=0\)
\(\Rightarrow x=5\)
\(c,x^2-2019x+2018=0\)
\(x^2-x-2018x+2018=0\)
\(x\left(x-1\right)+2018\left(x-1\right)=0\)
\(\left(x+2018\right)\left(x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2018\\x=1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b,2x.(x-5)-x.(3+2x)=26
2x2 - 10x - 3x - 2x2 = 26
-13x = 26
x = -2
c, (x+7)2-x.(x-3)=12
x2 +14x +49 - x2 + 3x = 12
17x + 49 = 12
17x = - 37
x = \(\dfrac{-37}{17}\)
d, 9( x -2018) - x+ 2018 =0
9( x -2018) - (x -2018) = 0
( 9-1)(x -2018) = 0
8( x -2018) = 0
x -2018 = 0
x = 2018
a: =>2x+10-x^2-5=0
=>-x^2+2x+5=0
=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)
e: =>4x^2+4x+9x^2-4=15
=>13x^2+4x-19=0
=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ad C-S
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2\right)^2}{a}+\dfrac{\left(x^2\right)^2}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}=\dfrac{1}{a+b}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(P=\left(x+1\right)\left(x^2-x+1\right)+x-\left(x-1\right)\left(x^2+x+1\right)+2018\)
\(=\left(x^3+1\right)+x-\left(x^3-1\right)+2018=1+\left(x+2019\right)\)
Mà x=-2019 nên x+2019=0
\(\Rightarrow P=1\)
Vậy P=1 tại x=-2019
b)\(Q=16x\left(4x^2-5\right)-\left(4x+1\right)\left(16x^2-4x+1\right)\)
\(=64x^3-16.5x-\left(64x^3+1\right)=64x^3-64x^3-1-16.5x=-1-16.5x\)
Mà x=1/5 nên 5x=1 từ đó suy ra Q=-1-16=-17
Vậy Q=-17 tại x=1/5
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Có: \(\left\{{}\begin{matrix}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\\left|x+3\right|\ge0\end{matrix}\right.\Rightarrow4x\ge0\Rightarrow x\ge0\Rightarrow\left\{{}\begin{matrix}x+1\ge0\\x+2\ge0\\x+3\ge0\end{matrix}\right.\)
\(\Rightarrow x+1+x+2+x+3=4x\)
\(\Rightarrow3x+6=4x\)
\(\Rightarrow x=6\)
a) \(4x\left(x-2018\right)-x+2018=0\)
\(=>4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(=>\left(4x-1\right)\left(x-2018\right)=0\)
\(=>\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}}\)
vậy \(x=\frac{1}{4}\) hoặc \(x=2018\)
b) \(\left(x+1\right)^2=x+1\)
\(=>x^2+2x+1=x+1\)
\(=>x^2+2x+1-x-1=0\)
\(=>x^2+x=0\)
\(=>x\left(x+1\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
vậy \(x=0\)hoặc \(x=-1\)
a,
4x(x-2018)-(x-2018)=0
<=> (4x-1)(x-2018)=0
<=> 4x-1=0 hoặc x-2018=0
x1=1/4 ; x2=2018 là nghiệm của pt
b,
(x+1)2 =x+1
=> (x+1)2-(x+1)=0
<=>(x+1)(x+1-1)=0
x1=-1 ; x2=0 là nghiệm của pt
ko cần hằng đẳng thức j cả