Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x\left(x-2018\right)-x+2018=0\)
\(\Rightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Rightarrow\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2018\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy.....................
\(4x\left(x-2018\right)-x+2018=0\)
\(4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)
xài dấu [ thì nên dùng dấu tương đương nha @greninja
\(4x\left(x-2018\right)-x+2018=0\)
\(\Leftrightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(x-2018\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)
Vậy x=1/4 hoặc x=2018
a) \(4x\left(x-2018\right)-x+2018=0\)
\(=>4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(=>\left(4x-1\right)\left(x-2018\right)=0\)
\(=>\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}}\)
vậy \(x=\frac{1}{4}\) hoặc \(x=2018\)
b) \(\left(x+1\right)^2=x+1\)
\(=>x^2+2x+1=x+1\)
\(=>x^2+2x+1-x-1=0\)
\(=>x^2+x=0\)
\(=>x\left(x+1\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
vậy \(x=0\)hoặc \(x=-1\)
b,2x.(x-5)-x.(3+2x)=26
2x2 - 10x - 3x - 2x2 = 26
-13x = 26
x = -2
c, (x+7)2-x.(x-3)=12
x2 +14x +49 - x2 + 3x = 12
17x + 49 = 12
17x = - 37
x = \(\dfrac{-37}{17}\)
d, 9( x -2018) - x+ 2018 =0
9( x -2018) - (x -2018) = 0
( 9-1)(x -2018) = 0
8( x -2018) = 0
x -2018 = 0
x = 2018
a: =>2x+10-x^2-5=0
=>-x^2+2x+5=0
=>\(x\in\left\{1+\sqrt{6};1-\sqrt{6}\right\}\)
e: =>4x^2+4x+9x^2-4=15
=>13x^2+4x-19=0
=>\(x\in\left\{\dfrac{-2+\sqrt{251}}{13};\dfrac{-2-\sqrt{251}}{13}\right\}\)
\(x^4+4x^2-5=0\)
\(\Leftrightarrow x^4-x^2+5x^2-5=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)+5\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+5\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5=0\left(l\right)\\x=1\\x=-1\end{matrix}\right.\)
\(4\left(x+5\right)-3\left|2x-1\right|=0\)
\(\Leftrightarrow3\left|2x-1\right|=4\left(x+5\right)\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{4}{3}\left(x+5\right)\left(ĐK:x\ge-5\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{4}{3}\left(x+5\right)\\2x-1=-\dfrac{4}{3}\left(x+5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=\dfrac{4}{3}x+\dfrac{20}{3}\\2x-1=-\dfrac{4}{3}x-\dfrac{20}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=-\dfrac{23}{3}\\\dfrac{2}{3}x=-\dfrac{17}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{23}{2}\left(l\right)\\x=-\dfrac{17}{10}\left(n\right)\end{matrix}\right.\)
Vậy: \(x=-\dfrac{17}{10}\)
\(a;x^3-\dfrac{1}{4}x=0\)
\(x\left(x^2-\dfrac{1}{4}\right)=0\)
\(x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(b,x^2-10x=-25\)
\(x^2-10x+25=0\)
\(\left(x-5\right)^2=0\)
\(\Rightarrow x=5\)
\(c,x^2-2019x+2018=0\)
\(x^2-x-2018x+2018=0\)
\(x\left(x-1\right)+2018\left(x-1\right)=0\)
\(\left(x+2018\right)\left(x-1\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2018\\x=1\end{matrix}\right.\)
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
\(4x\left(x-2018\right)-x+2018=0\)
\(\Rightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Rightarrow\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2018=0\\4x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2018\\x=\dfrac{1}{4}\end{matrix}\right.\)
Vậy ..................................................
#Kαrμto