K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

     \(x^3-3x^2+2x-6=0\)

\(\Rightarrow x^2\left(x-3\right)+2\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+3\right)=0\)

\(\Rightarrow x=3\) (vì \(\left(x^2+3>0\forall x\right)\) 

Bài 2: viết sai đề bài rồi.

       n là số tự nhiên lẻ nên n có dạng n = 2k + 1

Ta có: 

\(A=n^3+3n^2-n-3\)

   \(=n^2\left(n+3\right)-\left(n+3\right)\)

   \(=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n+1\right)\left(n-1\right)\)

   \(=\left(2k+1+3\right)\left(2k+1+1\right)\left(2k+1-1\right)\)

   \(=\left(2k+4\right)\left(2k+2\right)\left(2k\right)\)

   \(=8k\left(k+1\right)\left(k+2\right)⋮8\)

Chúc bạn học tốt.

     

3 tháng 2 2016

3x+12=2x-4

3x-2x=-4-12

1x=-16

   x=-16:1    =>x=-16

14-3x=x+4

-3x-x=4-14

-4x=-10

x=-10:-4   =>x=-10/-4

2(x-2)+7=x-25

2x-4+7=x-25

2x-x=-25+4-7

2x=-28

x=-28;2  =>x=-14

|a+3|=-3

a+3=-3 hoặc a+3=3

a=-6 hoặc a=0

3 tháng 2 2016

tìm x thì dễ rồi , mình làm tìm n nhá

a, ta có n+5=n-1+6

mà n-1 chia hết cho n-1

suy ra để n là số nguyên thì 6 chia hết cho n

suy ra n là ước của 6 ={

±1;

±6}

rồi bạn lập bảng tìm x vậy nhá , viết kí hiệu thay chữ dùm mình

6 tháng 10 2023

Bài 5.5:

\(\left(2x-3\right)\left(x+1\right)+\left(4x^3-6x^2-6x\right):\left(-2x\right)=18\)

\(\Leftrightarrow\left(2x^2+2x-3x-3\right)+2x\cdot\left(2x^2-3x-3\right):\left(-2x\right)=18\)

\(\Leftrightarrow2x^2-x-3-2x^2+3x+3=18\)

\(\Leftrightarrow2x=18\)

\(\Leftrightarrow x=\dfrac{18}{2}\)

\(\Leftrightarrow x=9\) 

19 tháng 10 2015

dài quá mình ko làm hết.

19 tháng 9 2023

a) Giả sử \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\)

- Với \(n=1:\)

\(S_n=\dfrac{1.\left(1+1\right)\left(2.1+1\right)}{6}=\dfrac{2.3}{6}=1\left(luôn.đúng\right)\)

- Với \(n=k:\) 

\(S_k=1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\left(\forall k\inℕ^∗\right)\left(luôn.đúng\right)\)

- Với \(n=k+1:\) 

\(S_{k+1}=1^2+2^2+3^2+...+k^2+\left(k+1\right)^2\)

\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)

\(\Rightarrow S_{k+1}=\dfrac{k\left(k+1\right)\left(2k+1\right)+6\left(k+1\right)^2}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+7k+6\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k^2+3k+4k+6\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[2k\left(k+\dfrac{3}{2}\right)+4\left(k+\dfrac{3}{2}\right)\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(2k+4\right)\left(k+\dfrac{3}{2}\right)\right]}{6}\)

\(\Rightarrow S_{k+1}=\dfrac{\left(k+1\right)\left[\left(k+2\right)\left(2k+3\right)\right]}{6}\) (Đúng với \(n=k+1\))

Vậy \(S_n=1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(\forall n\inℕ^∗\right)\left(dpcm\right)\)

19 tháng 9 2023

Lớp 6 không chứng minh quy nạp!

26 tháng 1 2018

a . n+4\(⋮\)n+1

\(\Rightarrow\)(n+1)+3 \(⋮\)n+1

mà n+1 \(⋮\)n+1 \(\Rightarrow\)3\(⋮\)n+1 hay n+1 \(\in\)ước của 3

ta có bảng sau:

n+1-113-3
n-202-4

vậy n \(\in\)(-2;0;2;-4)

các bài sau cứ làm tưng tự nhé