Chứng minh rằng với mọi số tự nhiên n ta luôn có :
a, 7^14n - 1 chia hết cho 5.
b, 12^4n+1 + 3^4n+1 chia hết cho 5.
c, 9^2001n + 1 chia hết cho 10.
d, n^2 + n + 12 không chia hết cho 5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh tồn tại vô số n là số tự nhiên sao cho 4n2 +1 chia hết cho 5 và chia hết chô 13
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3
n2+n+2016
=n2+n+1+2015
Ta xét ra 5 trường hợp n2 có chữ số tận cùng là: 1,4,5,6,9.
Bc cuối bạn có thể tự làm nhé.
Chúc may mắn!!!
+) Xét n=5k
=>\(n^2+n+2016=25k^2+5k+2016=5\left(5k^2+k+403\right)+1\) không chia hết cho 5
+) Xét n=5k+1
=>\(n^2+n+2016=\left(5k+1\right)^2+5k+1+2016=25k^2+10k+1+5k+1+2016\)
\(=25k^2+15k+2018=5\left(5k^2+3k+403\right)+3\) không chia hết cho 5
+) Xét n=5k+2
=>\(n^2+n+2016=\left(5k+2\right)^2+5k+2+2016=25k^2+20k+4+5k+2+2016\)
\(=25k^2+25k+2022=5\left(5k^2+5k+404\right)+2\) không chia hết cho 5
+) Xét n=5k+3
=>\(n^2+n+2016=\left(5k+3\right)^2+5k+3+2016=25k^2+30k+9+5k+3+2016\)
\(=25k^2+35k+2028=5\left(5k^2+7k+405\right)+3\) không chia hết cho 5
+) Xét n=5k+4
=>\(n^2+n+2016=\left(5k+4\right)^2+5k+4+2016=25k^2+40k+16+5k+4+2016\)
\(=25k^2+45k+2036=5\left(5k^2+9k+407\right)+1\) không chia hết cho 5
Từ 5 trường hợp trên => đpcm
a,Vì \(7^4\)có tận cùng bằng 1 mà tận cùng bằng 1 thì nhân số mũ bao nhiêu cũng bằng 1
\(\Rightarrow\)\(7^{14n}\)tận cùng là 1 mà 1-1=0
\(\Rightarrow\)Tận cùng 0 \(⋮\) \(5\)
Vậy \(7^{14n}-1⋮5\left(đpcm\right)\)
c,Ta thấy \(9^1=...9\)
\(9^2=...1\)
\(\Rightarrow\)Với số mũ lẻ thì có tận cùng là 9
số mũ chẵn thì có tận cùng là 1
Mà 2001 là số mũ lẻ nên có tận cùng là ...9
Ta thấy :...9 + 1 = 0 \(⋮\)\(10\)
Vậy \(9^{2001n+1}⋮10\)
Hai câu còn lại pn lm tiếp nhé!
Ủng hộ mk nào