Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
n luôn chia hết cho 2
vì n + 3 x n + 12 luôn là số chẵn
+ Xét TH1: n chẵn
Suy ra n chia hết 2, do đó n(n + 5) cũng chia hết cho 2.
+ Xét TH2: n lẻ
Suy ra n + 5 chẵn
Do đó (n + 5) chia hết 2
Vậy n(n +5) chia hết cho 2.
TA CÓ
+ Nếu n chia hết cho 2 thì nx(n+5) chia hết cho 2 thì bài toán đã được chứng minh
+Nếu n ko chia hết cho 2 thì n = 2k+1 suy ra n+5 =2k+5+1=2k+6
mà 2k chia hết cho 2 và 6 chia hết cho 2 nên n+5 chia hết cho 2
suy ra n(n+5) chia hết cho 2
Vậy n(n+5) luôn chia hết cho 2 (đpcm)
Nếu n = 2k => n chia hết cho 2
=> n(n + 5) chia hết cho 2
Nếu n = 2k + 1 => n + 5 = 2k + 1 + 5 = 2k + 6 chia hết cho 2
=> n + 5 chia hết cho 2
=> n(n + 5) chia hết cho 2
Vậy với mọi số tự nhiên n thì tích n(n + 5) chia hết cho 2.
dài quá bạn hỏi từng câu nhé
bạn chia thành ngắn í,dài khong thích đọc