x2+5x+5xy+25y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right).\frac{x^2-25y^2}{x^2+y^2}\)
\(=\left(\frac{5x+y}{x\left(x-5y\right)}+\frac{5x-y}{x\left(x+5y\right)}\right).\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{\left(5x+y\right)\left(x+5y\right)+\left(5x-y\right)\left(x-5y\right)}{x\left(x-5y\right)\left(x+5y\right)}.\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\frac{10}{x}\)
\(\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right).\frac{x^2-25y^2}{x^2+y^2}\)
\(=\left(\frac{5x+y}{x\left(x-5y\right)}+\frac{5x-y}{x\left(x+5y\right)}\right)\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{\left(5x+y\right)\left(x+5y\right)+\left(5x-y\right)\left(x-5y\right)}{x\left(x-5y\left(x+4y\right)\right)}.\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\frac{10}{x}\)
đề bài thực hiện phép tính ( / ) là phân số ai nhanh mình k cố lên nhé
\(\left(\frac{5x+y}{x^2-5xy}+\frac{5x-y}{x^2+5xy}\right).\frac{x^2-25y^2}{x^2+y^2}\)
\(=\left(\frac{5x+y}{x\left(x-5y\right)}+\frac{5x-y}{x\left(x+5y\right)}\right).\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\left[\frac{\left(5x+y\right)\left(x+5y\right)+\left(5x-y\right)\left(x-5y\right)}{x\left(x-5y\right)\left(x+5y\right)}\right].\frac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\)
\(=\frac{5x^2+25xy+xy+5y^2+5x^2-25xy-xy+5y^2}{x\left(x^2+y^2\right)}\)
\(=\frac{10x^2+10y^2}{x\left(x^2+y^2\right)}\)
\(=\frac{10}{x}\)
a) x 2 + 4x – 12;
b) 1 2 xy 4 – 10 x 3 y – 2 xy 2 - 1 10 y 3 + 2 x 2 + 2 5 y ;
c) x 3 + 27.
\(a,=\dfrac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\dfrac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{-8x}{\left(x-2\right)^2\left(x+2\right)^2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{2x}=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)
\(b,=\dfrac{5x^2+26xy+5y^2+5x^2-26xy+5y^2}{x\left(x-5y\right)\left(x+5y\right)}\cdot\dfrac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\\ =\dfrac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{10}{x}\)
a) \(x^2+5x+5xy+25y\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
c) \(x^2-24x-25\)
\(=x^2-25x+x-25\)
\(=x\left(x-25\right)+\left(x-25\right)\)
\(\left(x+1\right)\left(x-25\right)\)